Super Typhoon Haiyan made landfall in the central Philippines on the morning of November 7, 2013, with sustained winds over 306 km·h⁻¹, the strongest ever recorded for a tropical cyclone at landfall using satellite measurements. In *Geosystems*, we discuss tropical cyclones and other severe weather events on Earth in Chapter 8. [NOAA Forecast Systems Laboratory.]
AN INTRODUCTION TO PHYSICAL GEOGRAPHY

Geosystems

Fourth Canadian Edition

Robert W. Christopherson
American River College, Emeritus

Ginger H. Birkeland
Arizona State University, Ph.D.

Mary-Louise Byrne
Wilfrid Laurier University

Philip T. Giles
Saint Mary’s University

PEARSON
Toronto
dedication
To the students and teachers of Earth, and
to all the children and grandchildren, for it
is their future and home planet.

The land still provides our genesis,
however we might like to forget that our
food comes from dank, muddy Earth, that
the oxygen in our lungs was recently
inside a leaf, and that every newspaper
or book we may pick up is made from the
hearts of trees that died for the sake of
our imagined lives. What you hold in your
hands right now, beneath these words, is
consecrated air and time and sunlight.

—Barbara Kingsolver

Environmental Statement
This book is carefully crafted to minimize environmental impact. Pearson Canada is proud to report that the materials
used to manufacture this book originated from sources committed to sustainable forestry practices, tree harvesting,
and associated land management. The binding, cover, and paper come from facilities that minimize waste, energy usage,
and the use of harmful chemicals.

Equally important, Pearson Canada closes the loop by recycling every out-of-date text returned to our warehouse. We
pulp the books, and the pulp is used to produce other items such as paper coffee cups or shopping bags.

The future holds great promise for reducing our impact on Earth's environment, and Pearson Canada is proud to be
leading the way in this initiative. From production of the book to putting a copy in your hands, we strive to publish the best
books with the most up-to-date and accurate content, and to do so in ways that minimize our impact on Earth.
Essentials of Geography

Part I The Energy–Atmosphere System

1. Solar Energy to Earth and the Seasons
2. Earth’s Modern Atmosphere
3. Atmosphere and Surface Energy Balances
4. Global Temperatures
5. Atmospheric and Oceanic Circulations

Part II The Water, Weather, and Climate Systems

6. Water and Atmospheric Moisture
7. Weather
8. Water Resources
9. Global Climate Systems
10. Climate Change

Part III The Earth–Atmosphere Interface

11. The Dynamic Planet
12. Tectonics, Earthquakes, and Volcanism
13. Weathering, Karst Landscapes, and Mass Movement
14. River Systems
15. Oceans, Coastal Systems, and Wind Processes
16. Glacial and Periglacial Landscapes

Part IV Soils, Ecosystems, and Biomes

17. The Geography of Soils
18. Ecosystem Essentials
19. Terrestrial Biomes

Appendix A Maps in This Text and Topographic Maps
Appendix B The 12 Soil Orders of the U.S. Soil Taxonomy
Appendix C The Köppen Climate Classification System
Appendix D Common Conversions
Preface xviii
Digital and Print Resources xxii
Book and MasteringGeography Walkthrough xxii

1 Essentials of Geography 2
KEY LEARNING concepts 2
GEOSYSTEMS now Canada’s Borders, Not Just Lines on a Map 3
The Science of Geography 5
The Geographic Continuum 7
Geographic Analysis 7
The Scientific Process 7
Human–Earth Interactions in the 21st Century 8
Earth Systems Concepts 11
Systems Theory 11
Systems Organization in Geosystems 14
Earth’s Dimensions 19

2 Solar Energy to Earth and the Seasons 42
KEY LEARNING concepts 42
GEOSYSTEMS now Chasing the Subsolar Point 43
The Solar System, Sun, and Earth 44
Solar System Formation 45
Dimensions and Distances 45

PART I The Energy–Atmosphere System 40
Solar Energy: From Sun to Earth 45
Solar Activity and Solar Wind 46
Electromagnetic Spectrum of Radiant Energy 47
Incoming Energy at the Top of the Atmosphere 49
The Seasons 51
Seasonality 52
Reasons for Seasons 52
Annual March of the Seasons 55

Location and Time on Earth 20
Latitude 20
Longitude 22
Great Circles and Small Circles 23
Meridians and Global Time 23
Maps and Cartography 25
The Scale of Maps 26
Map Projections 26
Modern Tools and Techniques for Geoscience 30
Global Positioning System 30
Remote Sensing 31
Geographic Information Systems 33

GEO reports: 7 REPORTS

Critical Thinking 1.1 What Is Your Footprint? 11
Critical Thinking 1.2 Latitudinal Geographic Zones and Temperature 21
Critical Thinking 1.3 Where Are You? 23
Critical Thinking 1.4 Find and Compare Map Scales 26
Critical Thinking 1.5 Test Your Knowledge about Satellite Imagery 34

Quantitative Solution: Map Scales 36

Critical Thinking 2.1 A Way to Calculate Sunrise and Sunset 52
Critical Thinking 2.2 Astronomical Factors Vary over Long Time Frames 54
CRITICAL THINKING 2.3 Use the Analemma to Find the Subsolar Point 58

THE human DENOMINATOR: Solar Energy and the Seasons 59

3 Earth’s Modern Atmosphere 64

KEY LEARNING concepts 64

GEOSYSTEMS now Humans Explore the Atmosphere 65

Atmospheric Composition, Temperature, and Function 66
 Atmospheric Profile 66
 Atmospheric Composition Criterion 67
 Atmospheric Temperature Criterion 69
 Atmospheric Function Criterion 71

Pollutants in the Atmosphere 73
 Natural Sources of Air Pollution 73

4 Atmosphere and Surface Energy Balances 90

KEY LEARNING concepts 90

GEOSYSTEMS now Melting Sea Ice Opens Arctic Shipping Lanes, However . . . 91

Energy-Balance Essentials 92
 Energy and Heat 92
 Energy Pathways and Principles 94

Energy Balance in the Troposphere 98
 The Greenhouse Effect and Atmospheric Warming 98
 Earth–Atmosphere Energy Balance 99

A Quantitative SOLUTION: Radiation and Temperature 60

VISUAL analysis 2 Dryland Agriculture 63

GEO reports: 4 REPORTS

Anthropogenic Pollution 76
 Natural Factors That Affect Pollutants 80
 Benefits of the Clean Air Act 81

GEOSYSTEMS: connection 85

KEY LEARNING concepts review 87

geosystems in action 3 Air Pollution 82

Focus Study 3.1 Pollution 74

Focus Study 3.2 Pollution 78

CRITICAL THINKING 3.1 Where Is Your Tropopause? 71

CRITICAL THINKING 3.2 Finding Your Local Ozone 72

CRITICAL THINKING 3.3 Evaluating Costs and Benefits 84

THE human DENOMINATOR: The Shared Global Atmosphere 85

A Quantitative SOLUTION: Lapse Rates 86

VISUAL analysis 3 The Atmosphere and Inversion Layers 89

GEO reports: 5 REPORTS

Energy Balance at Earth’s Surface 103
 Daily Radiation Patterns 103
 A Simplified Surface Energy Budget 104
 The Urban Environment 107

GEOSYSTEMS: connection 112

KEY LEARNING concepts review 113

geosystems in action 4 Earth–Atmosphere Energy Balance 100

Focus Study 4.1 Sustainable Resources 108

CRITICAL THINKING 4.1 A Kelp Indicator of Surface Energy Dynamics 102

CRITICAL THINKING 4.2 Applying Energy-Balance Principles to a Solar Cooker 105

CRITICAL THINKING 4.3 Looking at Your Surface Energy Budget 111

THE human DENOMINATOR: Changes in Atmospheric and Surface Energy Budgets 112

A Quantitative SOLUTION: Zero-Dimensional Global Energy Balance Model 113

GEO reports: 3 REPORTS
5 Global Temperatures 116

KEY LEARNING concepts 116

GEO SYSTEMS NOW The Mystery of St. Kilda’s Shrinking Sheep 117

Temperature Concepts and Measurement

- Temperature Scales 119
- Measuring Temperature 120

Principal Temperature Controls

- Latitude 122
- Altitude and Elevation 122
- Cloud Cover 123
- Land–Water Heating Differences 124

6 Atmospheric and Oceanic Circulations 142

KEY LEARNING concepts 142

GEO SYSTEMS NOW Ocean Currents Bring Invasive Species 143

Wind Essentials

- Air Pressure 145
- Wind: Description and Measurement 146

Driving Forces within the Atmosphere

- Pressure Gradient Force 148
- Coriolis Force 148
- Friction Force 150
- Summary of Physical Forces on Winds 151
- High- and Low-Pressure Systems 151

Atmospheric Patterns of Motion

- Primary Pressure Areas and Associated Winds 151
- Upper Atmospheric Circulation 153

Earth’s Temperature Patterns 130

- January and July Global Temperature Maps 130
- January and July Polar-Region Temperature Maps 132
- Annual Temperature Range Map 133

Recent Temperature Trends and Human Response 134

- Record Temperatures and Greenhouse Warming 134
- Heat Stress and the Heat Index 136

Recent Temperature Trends and Human Response 134

- Record Temperatures and Greenhouse Warming 134
- Heat Stress and the Heat Index 136

Oceanic Currents 163

- Surface Currents 163
- Thermohaline Circulation—The Deep Currents 165

Natural Oscillations in Global Circulation 168

- El Niño–Southern Oscillation 168
- Pacific Decadal Oscillation 170
- North Atlantic and Arctic Oscillations 171

Monsoonal Winds 160

- Local Winds 162

Oceanic Currents 163

- Surface Currents 163
- Thermohaline Circulation—The Deep Currents 165

Natural Oscillations in Global Circulation 168

- El Niño–Southern Oscillation 168
- Pacific Decadal Oscillation 170
- North Atlantic and Arctic Oscillations 171

Focus Study 6.1 Sustainable Resources 166

- CRITICAL THINKING 6.1 Measure the Wind 148
- CRITICAL THINKING 6.2 What Causes the North Australian Monsoon? 162
- CRITICAL THINKING 6.3 Construct Your Own Wind-Power Assessment Report 163

Visual analysis 6 Atmospheric Circulation 177

GEO REPORTS 4 REPORTS

GEO REPORTS 5 REPORTS
PART II The Water, Weather, and Climate Systems

7 Water and Atmospheric Moisture

Key Learning Concepts

Geosystems: Now Getting Water from the Air in Arid Climates

Water's Unique Properties

- Phase Changes and Heat Exchange
- Latent Heat Transfer under Natural Conditions

Humidity

- Relative Humidity
- Specialized Expressions of Humidity
- Instruments for Measuring Humidity

Atmospheric Stability

- Adiabatic Processes
- Stable and Unstable Atmospheric Conditions

Clouds and Fog

- Cloud Formation Processes
- Cloud Types and Identification
- Processes That Form Fog

Geosystems: Connection

7.1 Iceberg Analysis

Critical Thinking

7.2 Changes in Temperature and Humidity

7.3 Identify Two Kinds of Fog

The Human Denominator: Atmospheric Moisture

A Quantitative Solution: Measuring Relative Humidity and Dew-Point Temperature

Visual Analysis 7: What type of fog is this?

GEO Reports

Part I The Water, Weather, and Climate Systems

8 Weather

Key Learning Concepts

Geosystems: Now What Is the Increasing Cost of Intense Weather?

Air Masses

- Air Masses Affecting North America
- Air Mass Modification

Atmospheric Lifting Mechanisms

- Convergent Lifting
- Convectional Lifting
- Orographic Lifting
- Frontal Lifting (Cold and Warm Fronts)

Midlatitude Cyclonic Systems

- Life Cycle of a Midlatitude Cyclone
- Weather Maps and Forecasting

Focus Study 8.1 Natural Hazards

Critical Thinking

8.1 Analyzing a Weather Map

8.2 Hazard Perception and Planning: What Seems to Be Missing?

The Human Denominator: Weather

A Quantitative Solution: Adiabatic Warming and the Rain Shadow

Visual Analysis 8: Wildfire, clouds, climatic regions, and climate change

GEO Reports: 5 REPORTS
9 Water Resources 240
 KEY LEARNING concepts 240
 GEOSYSTEMS now Water Resources and Climate Change in the Prairies 241
 Water on Earth 242
 Worldwide Equilibrium 243
 Distribution of Earth’s Water Today 243
 The Hydrologic Cycle 244
 Water in the Atmosphere 245
 Water at the Surface 245
 Water in the Subsurface 246
 Water Budgets and Resource Analysis 246
 Components of the Water Budget 247
 The Water-Budget Equation 250
 Sample Water Budgets 251
 Drought: The Water Deficit 251
 Surface Water Resources 253
 Snow and Ice 254

10 Global Climate Systems 274
 KEY LEARNING concepts 274
 GEOSYSTEMS now A Large-Scale Look at Vancouver Island’s Climate 275
 Review of Earth’s Climate System 276
 Classifying Earth’s Climates 276
 Tropical Rain Forest Climates 282
 Tropical Monsoon Climates 282
 Tropical Savanna Climates 283
 Humid Subtropical Hot-Summer Climates 285
 Humid Subtropical Winter-Dry Climates 285
 Marine West Coast Climates 287
 Mediterranean Dry-Summer Climates 287
 Humid Continental Hot-Summer Climates 289
 Humid Continental Mild-Summer Climates 292
 Subarctic Climates 293
 Tundra Climates 295
 Ice-Cap and Ice-Sheet Climates 295
 Polar Marine Climates 295
 Characteristics of Dry Climates 297
 Tropical, Subtropical Hot Desert Climates 297
 Midlatitude Cold Desert Climates 297
 Tropical, Subtropical Hot Steppe Climates 298
 Midlatitude Cold Steppe Climates 298
 Climate Regions and Climate Change 300
 GEOSYSTEMS connection 302
 KEY LEARNING concepts review 304
 geosystems in action 10 Earth’s Climate System 278
 CRITICAL THINKING 10.1 Finding Your Climate 282
 The human denominator 10 Climate Regions 302
 A Quantitative solution: Temperature and Degree-Days 303
 GEO reports: 3 REPORTS
11 Climate Change 306

KEY LEARNING concepts 306

GEOSYSTEMS NOW Greenhouse Gases awaken in the Arctic 307

Population Growth and Fossil Fuels—The Setting for Climate Change 308

Deciphering Past Climates 310
- Methods for Long-Term Climate Reconstruction 311
- Earth’s Long-Term Climate History 313
- Methods for Short-Term Climate Reconstruction 315
- Earth’s Short-Term Climate History 317

Mechanisms of Natural Climate Fluctuation 319
- Solar Variability 319
- Earth’s Orbital Cycles 319
- Continental Position and Topography 320
- Atmospheric Gases and Aerosols 320

Climate Feedbacks and the Carbon Budget 320
- Earth’s Carbon Budget 321
- Water-Vapour Feedback 321
- Carbon–Climate Feedback 321
- CO₂–Weathering Feedback 321

Evidence for Present Climate Change 324
- Temperature 324

Ice Melt 325
- Sea-Level Rise 326
- Extreme Events 326

Causes of Present Climate Change 328
- Contributions of Greenhouse Gases 328
- Sources of Radiative Forcing 331
- Scientific Consensus 333

Climate Models and Forecasts 335
- Radiative Forcing Scenarios 335
- Future Temperature Scenarios 336
- Sea-Level Projections 336

The Path Ahead 337
- Taking a Position on Climate Change 338
- Action Now Means “No Regrets” 338

GEOSYSTEMS connection 340

KEY LEARNING concepts review 342

geosystems in action 11 The Global Carbon Budget 322

Focus Study 11.1 Climate Change 332

CRITICAL THINKING 11.1 Crossing the 450-ppm Threshold for Carbon Dioxide 310

CRITICAL THINKING 11.2 Thinking through an Action Plan to Reduce Human Climate Forcing 332

CRITICAL THINKING 11.3 Consider Your Carbon Footprint 339

PART III The Earth–Atmosphere Interface 344

12 The Dynamic Planet 346

KEY LEARNING concepts 346

GEOSYSTEMS NOW Earth’s Migrating Magnetic Poles 347

The Pace of Change 348

Earth’s Structure and Internal Energy 350
- Earth’s Core and Mantle 350
- Earth’s Crust 351
- The Asthenosphere and Lithosphere 352

Earth’s Magnetism 353

Earth Materials and the Rock Cycle 355
- Igneous Processes 355
- Sedimentary Processes 357
- Metamorphic Processes 360
- The Rock Cycle 361

Plate Tectonics 363
- Continental Drift 363
- Seafloor Spreading 363
- Subduction 366
- Plate Boundaries 367
- Earthquake and Volcanic Activity 369
- Hot Spots 370

The Geologic Cycle 375

GEOSYSTEMS connection 378

KEY LEARNING concepts review 379
Contents

13 Tectonics, Earthquakes, and Volcanism

KEY LEARNING concepts 382

GEOSYSTEMS now The San Jacinto Fault Connection 383

Earth's Surface Relief 384
- Studying Earth's Topography 384
- Orders of Relief 384
- Earth's Hypsometry 385
- Earth's Topographic Regions 385

Crustal Formation 387
- Continental Shields 387
- Building Continental Crust and Accretion of Terranes 388

Crustal Deformation 389
- Folding and Broad Warping 390
- Faulting 392

Orogenesis (Mountain Building) 394
- Types of Orogenesis 397
- The Appalachian Mountains 397
- The Western Cordillera 400
- The Inuitian Mountains 400
- World Structural Regions 400

14 Weathering, Karst Landscapes, and Mass Movement

KEY LEARNING concepts 422

GEOSYSTEMS now Human-Caused Scarification in the Athabasca Region of Alberta 423

Landmass Denudation 424
- Dynamic Equilibrium Approach to Understanding Landforms 425
- Slopes 428
Weathering Processes 428
 Factors Influencing Weathering Processes 429
 Physical Weathering Processes 430
 Chemical Weathering Processes 432
Karst Topography 435
 Formation of Karst 436
 Features of Karst Landscapes 436
 Caves and Caverns 437
Mass-Movement Processes 440
 Mass-Movement Mechanics 441
 Classes of Mass Movements 441
 Humans as a Geomorphic Agent 446

15 River Systems 452
 KEY LEARNING: concepts 452
 GEOSYSTEMS now: Environmental Effects of Dams on the Nu River in China 453
Drainage Basins and Drainage Patterns 454
 Drainage Divides 455
 Drainage Basins as Open Systems 457
 International Drainage Basins 457
 Internal Drainage 457
 Drainage Patterns 458
Basic Fluvial Concepts 459
 Gradient 459
 Base Level 459
 Stream Discharge 459
Fluvial Processes and Landforms 462
 Stream Channel Processes 462

16 Oceans, Coastal Systems, and Wind Processes 490
 KEY LEARNING: concepts 490
 GEOSYSTEMS now: Coastal Communities Facing Changes 491

Global Oceans and Seas 492
 Properties of Seawater 493
 Physical Structure and Human Impacts 494
Coastal System Components 495
 The Coastal Environment 496
 Sea Level 498
Coastal System Actions 499
 Tides 499
 Waves 501
Coastal System Outputs 505
 Coastal Erosion 505
 Coastal Deposition 507
 Barrier Beaches and Islands 511
Glacial and Periglacial Landscapes 532

17 Glacial and Periglacial Landscapes 532
KEY LEARNING concepts 532
GEOSYSTEMS now Tidewater Glaciers and Ice Shelves
Give Way to Warming 533
Snow into Ice—The Basis of Glaciers 534
Properties of Snow 534
Formation of Glacial Ice 535
Types of Glaciers 535
Alpine Glaciers 536
Continental Ice Sheets 538
Glacial Processes 538
Glacial Mass Balance 539
Glacial Movement 540
Glacial Landforms 544

CRITICAL THINKING 16.1 Coastal Sensitivity to Sea-Level Rise 499
CRITICAL THINKING 16.2 Allocating Responsibility and Cost for Coastal Hazards 513
CRITICAL THINKING 16.3 The Nearest Eolian Features to You 525
THE humanDENOMINATOR16: Oceans, Coasts, and Dunes 526
A Quantitative SOLUTION: Coastal Sediment Budgets 527
VISUAL analysis 16 Coastal Processes and Barrier Islands 531
GEOREPORTS: 5 REPORTS

Erosional Landforms 544
Depositional Landforms 547
Periglacial Landscapes 550
Periglacial Processes 551
Humans and Periglacial Landscapes 553
The Pleistocene Epoch 553
Ice-Age Landscapes 554
Paleolakes 555
Arctic and Antarctic Regions 558
Recent Polar Region Changes 559
GEOSYSTEMS connection 562
KEY LEARNING concepts review 564
GEOSYSTEMS in action 17 Glaciers As Dynamic Systems 542
Focus Study 17.1 Natural Hazards 536
CRITICAL THINKING 17.1 Looking for Glacial Features 547
CRITICAL THINKING 17.2 A Sample of Life at the Polar Station 559
CRITICAL THINKING 17.3 The IPY Accomplishment Continues 561
THE humanDENOMINATOR17: Glaciers and Permafrost 562
A Quantitative SOLUTION: Glacier Mass Balance 563
VISUAL analysis 17 Glacial Processes and Landforms 567
GEOREPORTS: 4 REPORTS

PART IV SOILS, ECOSYSTEMS, AND BIOMES 568

Soil-Formation Factors and Soil Profiles 572
Natural Factors in Soil Development 572
Soil Horizons 573
Soil Characteristics 574
Physical Properties 574
Chemical Properties 578
Human Impacts on Soils 579
Soil Erosion 579
Desertification 581
Soil Classification 582
Diagnostic Soil Horizons 582
Pedogenic Regimes 582

The Geography of Soils 570

18 The Geography of Soils 570
KEY LEARNING concepts 570
GEOSYSTEMS now Desertification: Declining Soils and Agriculture in Earth’s Drylands 571
xvi Geosystems

The Water, Weather, and Climate Systems

The Canadian System of Soil Classification (CSSC) 582
Categories of Classification in the CSSC 583
Soil Horizons in the CSSC 583
The 10 Soil Orders of the CSSC 583
CSSC and Worldwide Soil Taxonomy 596

Geosystems: connection 600
GEOSYSTEMS:connection 600
KEY LEARNING: concepts review 601
geosystems in action 18 Biological Activity in Soils 577

Focus Study 18.1 Pollution 587
CRITICAL THINKING 18.1 Soil Losses—What to Do? 582
CRITICAL THINKING 18.2 Soil Observations 583
THE:humanDENOMINATOR18: Soils and Land Use 600
A:QuantitativeSOLUTION: Soil Density and Porosity 601
VISUAL:analysis 18 Soil as a fuel 603
GEO:reports: 4 REPORTS

Biodiversity, Evolution, and Ecosystem Stability 628
Biological Evolution Delivers Biodiversity 628
Biodiversity Fosters Ecosystem Stability 628
Biodiversity on the Decline 630

Geosystems: connection 635
KEY LEARNING: concepts review 636
geosystems in action 19 Coastal Dead Zones 614
Focus Study 19.1 Natural Hazards 624
Focus Study 19.2 Environmental Restoration 632
CRITICAL THINKING 19.1 Mutualism? Parasitism? Where Do We Fit in? 621
CRITICAL THINKING 19.2 Observe Ecosystem Disturbances 623

THE:humanDENOMINATOR19: Ecosystems and Biodiversity 635
A:QuantitativeSOLUTION: Landscape Pattern Analysis 636
VISUAL:analysis 19 Declining food, climate change impacts, and animal stress 639
GEO:reports: 4 REPORTS

Terrestrial Biomes 640

Geosystems:now Species’ Distributions Shift with Climate Change 605

Energy Flows and Nutrient Cycles 606
Converting Energy to Biomass 607
Elemental Cycles 610
Energy Pathways 613

Communities and Species Distributions 619
The Niche Concept 619
Species Interactions 620
Abiotic Influences 621
Limiting Factors 622
Disturbance and Succession 623

Focus Study 19.1 Natural Hazards 624
Focus Study 19.2 Environmental Restoration 632
CRITICAL THINKING 19.1 Mutualism? Parasitism? Where Do We Fit in? 621
CRITICAL THINKING 19.2 Observe Ecosystem Disturbances 623

THE:humanDENOMINATOR19: Ecosystems and Biodiversity 635
A:QuantitativeSOLUTION: Landscape Pattern Analysis 636
VISUAL:analysis 19 Declining food, climate change impacts, and animal stress 639
GEO:reports: 4 REPORTS

Tropical Seasonal Forest and Scrub 651
Tropical Savanna 651
Midlatitude Broadleaf and Mixed Forest 654
Boreal and Montane Forest 655
Temperate Rain Forest 657
Mediterranean Shrubland 658
Midlatitude Grassland 659
Deserts 659
Arctic and Alpine Tundra 661

Conservation, Management, and Human Biomes 662
Island Biogeography for Species Preservation 662
Focus Study 20.1 Environmental Restoration 663
Aquatic Ecosystem Management 664
Anthropogenic Biomes 665

Geosystems:connection 666
KEY LEARNING: concepts review 668
geosystems in action 20 Tropical Rain Forests and Amazon Deforestation 652
Appendix A Maps in This Text and Topographic Maps A-1
Appendix B The 12 Soil Orders of the U.S. Soil Taxonomy A-6
Appendix C The Köppen Climate Classification System A-10
Appendix D Common Conversions A-13
Glossary G-1
Index I-1
Welcome to the Fourth Canadian Edition of *Geosystems*. This edition marks the addition of Dr. Ginger Birkeland as a coauthor to Robert Christopherson, Mary-Louise Byrne, and Philip Giles. The Fourth Canadian Edition features significant revision, with a new chapter on climate change, new features, updated content, and many new photos, maps, and illustrations. We continue to build on the success of the previous editions, as well as the companion texts, *Geosystems*, now in its Ninth Edition, and *Elemental Geosystems*, Eighth Edition. Canadian students and instructors appreciate the systems organization, scientific accuracy, integration of figures and examples specific to Canada while maintaining an international flavour throughout. The clarity of the summary and review sections, and overall relevancy to what is happening to Earth systems in real time are valued by all who use the *Geosystems*, Fourth Canadian Edition text. *Geosystems* continues to tell Earth’s story in student-friendly language.

The goal of physical geography is to explain the spatial dimension of Earth’s dynamic systems—its energy, air, water, weather, climate, tectonics, landforms, rocks, soils, plants, ecosystems, and biomes. Understanding human–Earth relations is part of physical geography as it seeks to understand and link the planet and its inhabitants. Welcome to physical geography!

New to the Fourth Canadian Edition

Nearly every page of *Geosystems*, Fourth Canadian Edition, presents updated material, new Canadian and international content in text and figures, or new features. A sampling of new features includes:

- **A new chapter on climate change.** Although climate change science affects all systems and is discussed to some extent in every chapter of *Geosystems*, we now present a stand-alone chapter covering this topic—Chapter 11, Climate Change. This chapter covers palaeoclimatology and mechanisms for past climatic change (expanding on topics covered in Chapter 17 in the previous edition), climate feedbacks and the global carbon budget, the evidence and causes of present climate change, climate models and projections, and actions that we can take to moderate Earth’s changing climate. This new Chapter 11 expands on the climate change discussion that was formerly part of Chapter 10, Climate Systems and Climate Change, in the previous edition. Canadian content has been added, including Canada’s decision to withdraw from the Kyoto Protocol in 2012.

- **A new *Geosystems in Action* feature focusing on key topics, processes, systems, or human–Earth connections.** In every chapter, *Geosystems in Action* is a one- to two-page highly visual presentation of a topic central to the chapter, with active learning questions and links to media in *MasteringGeography*, as well as a GeoQuiz to aid student learning. Throughout each part of the *Geosystems in Action* figure, students are asked to analyze, explain, infer, or predict based on the information presented. Topics include Earth–Sun Relations (Chapter 2), Air Pollution (Chapter 3), Earth–Atmosphere Energy Balance (Chapter 4), The Global Carbon Budget (Chapter 11), Glaciers As Dynamic Systems (Chapter 17), and Biological Activity in Soils (Chapter 18).

- **A new feature, *The Human Denominator*, that links chapter topics to human examples and applications.** At the end of Chapters 2 through 20, this new feature includes maps, photos, graphs, and other diagrams to provide visual examples of many human–Earth interactions. This feature replaces and expands on the former Chapter 21 in previous *Geosystems* editions, called *Earth and the Human Denominator*.

- **New and revised illustrations and maps to improve student learning.** More than 250 new photos and images bring real-world scenes into the classroom. Our photo and remote sensing program, updated for this edition, exceeds 500 items, integrated throughout the text.

- **New images and photos for the 20 chapter openers, and redesigned schematics and photos for the 4 part openers.**

- **Learning Catalytics**, a “bring your own device” student engagement, assessment, and classroom intelligence system, integrated with *MasteringGeography*.

Continuing in the Fourth Canadian Edition

- **Twenty-two Focus Studies**, with either updated or new content, explore relevant applied topics in greater depth and are a popular feature of the *Geosystems* texts. In this edition, these features are grouped by topic into five categories: Pollution, Climate Change, Natural Hazards, Sustainable Resources, and Environmental Restoration.

Ten new Focus Study topics include:

- Heat Waves (Chapter 5)
- Hurricanes Katrina and Sandy: Storm Development and Links to Climate Change (Chapter 8)
- Thawing Methane Hydrates—Another Arctic Methane Concern (Chapter 11)
- Earthquakes in Haiti, Chile, and Japan: A Comparative Analysis (Chapter 13)
- Stream Restoration: Merging Science and Practice (Chapter 15)
Flooding in Southern Alberta in 2013 (Chapter 15)
The 2011 Japan Tsunami (Chapter 16)
Snow Avalanches (Chapter 17)
Wildfire and Fire Ecology (Chapter 19)
Global Conservation Strategies (Chapter 20)

- The chapter-opening Geosystems Now case study feature presents current issues in geography and Earth systems science. These original, unique essays, updated for the Fourth Canadian Edition, immediately engage readers into the chapter with relevant, real-world examples of physical geography. New Geosystems Now topics in this edition include: Canada’s December 2013 claim to extend its boundary in the Arctic to the edge of the continental shelf (Chapter 1), getting water from the air in arid climates (Chapter 7), a large-scale look at Vancouver Island’s climate (Chapter 10), and the effects of proposed dams on rivers in China (Chapter 15). Many of these features emphasize linkages across chapters and Earth systems, exemplifying the Geosystems approach.

- GeoReports continue to describe timely and relevant events or facts related to the discussion in the chapter, provide student action items, and offer new sources of information. The 84 GeoReports in the Fourth Canadian Edition, placed along the bottom of pages, are updated, with many new to this edition. Example topics include:
 - Did light refraction sink the Titanic? (Chapter 4)
 - Yukon and Saskatchewan hold records for extreme temperatures (Chapter 5)
 - Stormy seas and maritime tragedy (Chapter 8)
 - Water use in Canada (Chapter 9)
 - Satellite GRACE enables groundwater measurements (Chapter 9)
 - Tropical climate zones advance to higher latitudes (Chapter 10)
 - Sinkhole collapse in Ottawa caused by human activities (Chapter 14)
 - Surprise waves flood a cruise ship (Chapter 16)
 - Greenland ice sheet melting (Chapter 17)
 - Overgrazing effects on Argentina’s grasslands (Chapter 18)

- Critical Thinking exercises are integrated throughout the chapters. These carefully crafted action items bridge students to the next level of learning, placing students in charge of further inquiry. Example topics include:
 - Applying Energy-Balance Principles to a Solar Cooker
 - What Causes the North Australian Monsoon?
 - Identify Two Kinds of Fog
 - Analyzing a Weather Map
 - Allocating Responsibility and Cost for Coastal Hazards
 - Tropical Forests: A Global or Local Resource?

- The Geosystems Connection feature at the end of each chapter provides a preview “bridge” between chapters, reinforcing connections between chapter topics.

- At the end of each chapter is A Quantitative Solution. This feature leads students through a solution to a problem, using a quantitative approach. Formerly called Applied Physical Geography, several of these were expanded or updated for this edition, and a new one was added (Map Scales, in Chapter 1).

- Key Learning Concepts appear at the outset of each chapter, many rewritten for clarity. Each chapter concludes with Key Learning Concepts Review, which summarizes the chapter using the opening objectives.

- Geosystems continues to embed Internet URLs within the text. More than 200 appear in this edition. These allow students to pursue topics of interest to greater depth, or to obtain the latest information about weather and climate, tectonic events, floods, and the myriad other subjects covered in the book.

- The MasteringGeography™ online homework and tutoring system delivers self-paced tutorials that provide individualized coaching, focus on course objectives, and are responsive to each student’s progress. Instructors can assign activities built around Geoscience Animations, Encounter “Google Earth™ Explorations”, MapMaster interactive maps, Thinking Spatially and Data Analysis activities, new GeoTutors on the most challenging topics in physical geography, end-of-chapter questions, and more. Students also have access to a text-specific Study Area with study resources, including an optional Pearson eText version of Geosystems, Geoscience Animations, MapMaster™ interactive maps, new videos, Satellite Loops, Author Notebooks, additional content to support materials for the text, photo galleries, In the News RSS feeds, web links, career links, physical geography case studies, flashcard glossary, quizzes, and more—all at www.masteringgeography.com.

Author Acknowledgments

The authors and publishers wish to thank all reviewers who have participated in reading material at various stages during development of Geosystems for previous editions, most recently those who reviewed manuscript for the Fourth Canadian Edition: Norm Catto, Memorial University of Newfoundland; Michele Wiens, Simon Fraser University; James Voogt, University of Western University; Nancy McKeown, MacEwan University; Trudy Kavanagh, University of British Columbia; and Denis Lacelle, University of Ottawa. And we extend continued thanks to reviewers of the previous three editions.

Alec Aitken, University of Saskatchewan
Peter Ashmore, University of Western Ontario
Chris Ayles, Camosun College
Claire Beaney, University of the Fraser Valley
Bill Buhay, University of Winnipeg
Leif Burge, Okanagan College
Ian Campbell, University of Alberta–Edmonton
Darryl Carlyle-Moses, Thompson Rivers University
I give special gratitude to all the students during the success of Geosystems. A beautiful photograph made by my wife, photographer, and expedition partner, Bobbé Christopherson. Her contribution to the success of Geosystems is obvious.

From Robert: I give special gratitude to all the students during my 30 years teaching at American River College, for it is in the classroom crucible that the Geosystems books were forged. I appreciate our Canadian staff at Pearson and the skilled Canadian educators that coauthored this edition, Mary-Lou Byrne and Philip Giles, who I am honored to call my colleagues. The Canadian environment is under accelerating climate-change stress that exceeds that occurring in the lower latitudes. For this reason, Geosystems, Fourth Canadian Edition, takes on an important role to educate and, hopefully, provoke actions toward a slower rate of climate change and a more sustainable future.

Thanks and admiration go to the many authors and scientists who published research that enriches this work. Thanks for all the dialogue received from students and teachers shared with me through e-mails from across the globe.

I offer a special thanks to Ginger Birkeland, Ph.D., our new coauthor on this edition and previous collaborator and developmental editor, for her essential work, attention to detail, and geographic sense. The challenge of such a text project is truly met by her strengths and talents. As you read this book, you will learn from many beautiful photographs made by my wife, photographer, and expedition partner, Bobbé Christopherson. Her contribution to the success of Geosystems is obvious.

From Ginger: Many thanks to my husband, Karl Birkeland, for his ongoing patience, support, and inspiration throughout the many hours of work on this book. I also thank my daughters, Érika and Kelsey, who endured my absence throughout a ski season and a rafting season as I sat at my desk. My gratitude also goes to William Graf, my academic advisor from so many years ago, for always exemplifying the highest standard of research and writing, and for helping transform my love of rivers into a love of science and all things geography. Special thanks to Robert Christopherson, who took a leap of faith to bring me on this Geosystems journey. It is a privilege to work with him.

From Mary-Louise: The incredible journey continues and once again I need to thank so many for their help. I owe my greatest thanks to my immediate family—my husband, Alain Pinard, and our children, Madeleine and Julianne, who continue to be curious about the world around them. To my extended family I am indebted to your honest comments and criticisms.

Geosystems is an amazing textbook, and I am so pleased to participate in its development. I thank all my colleagues in the geographic community in Canada who, by comment, communication, or review, helped to shape the contents of this text. I am forever indebted to Brian McCann for teaching me to look at physical processes from many perspectives and to integrate these perspectives in order to form an explanation. He is sadly missed.

To all the students with whom I had contact in 24 years of teaching at Wilfrid Laurier University, your enthusiasm and curiosity keep me focused on the goal of explaining planet Earth. I have had the pleasure of communicating with several current students from across the country that have had positive and constructive criticism about the book. I took your comments seriously and have addressed them where appropriate. It is amazing to hear from you and I encourage you to continue to communicate. To future students, our planet is in your hands: Care for it.

From Philip: I am very pleased and grateful to continue as part of the author team on Geosystems, Fourth Canadian Edition. For many years I admired the choice of content and writing style, as well as the presentation quality, in Geosystems. When selected to join the team for the Third Canadian Edition, it was an honor to know that I would be contributing to the preparation of this textbook which will play an important role for so many students in learning about physical geography. I knew quite early that I wanted to make physical geography my career, so to reach this stage and be playing this role as an author on a successful and influential textbook is extremely satisfying.

As an undergraduate and graduate student, one is influenced by many people. All of my course instructors and advisors helped me to learn and develop academically, and collectively they deserve recognition. In particular, like Mary-Lou, I also had the pleasure and
good fortune to have been taught and advised by Brian McCann during my time at McMaster University. Mary-Lou completed her Ph.D. while I was in the B.Sc. and M.Sc. programs at McMaster; we were both supervised by Brian for our thesis research on coastal sand dunes.

To Yvonne, my parents, and my colleagues in the Department of Geography and Environmental Studies at Saint Mary’s University, thank you all for your support over the years.

Whether you are taking this course as a requirement for your major or as an elective, I hope this textbook will help you find pleasure as you develop a better understanding of the physical environment. Robert, Ginger, Mary-Lou, and I each have a deep passion for this subject and one of the goals of this book is to inspire the same passion in you, our readers.

From all of us: Physical geography teaches us a holistic view of the intricate supporting web that is Earth’s environment and our place in it. Dramatic global change is underway in human–Earth relations as we alter physical, chemical, and biological systems. Our attention to climate change science and applied topics is in response to the impacts we are experiencing and the future we are shaping. All things considered, this is a critical time for you to be enrolled in a physical geography course! The best to you in your studies—and carpe diem!

Robert W. Christopherson
P. O. Box 128
Lincoln, California 95648-0128
E-mail: bobobbe@aol.com

Ginger H. Birkeland
Arizona State

Mary-Louise Byrne
Geography and Environmental Studies
Wilfrid Laurier University
Waterloo, Ontario
N2L 3C5
E-mail: mlbyrne@wlu.ca

Philip Giles
Department of Geography and Environmental Studies
Saint Mary’s University
Halifax, Nova Scotia
B3H 3C3
E-mail: philip.giles@smu.ca
digital and print resources

For Students and Teachers

MasteringGeography for Geosystems is the most effective and widely used tutorial, homework, and assessment system for the sciences. The Mastering system empowers students to take charge of their learning through activities aimed at different learning styles, and engages them in learning science through practice and step-by-step guidance—at their convenience, 24/7. MasteringGeography™ offers:

- **Assignable activities** that include Geoscience Animations, Encounter Google Earth™ Explorations, MapMaster™ interactive maps, Thinking Spatially and Data Analysis activities, GeoTutors on the most challenging topics in Physical Geography, end-of-chapter questions, reading questions, and more.
- **Student study area** with Geoscience Animations, MapMaster™ interactive maps, new videos, Satellite Loops, Author Notebooks, additional content to support materials for the text, photo galleries, In the News RSS feeds, web links, career links, physical geography case studies, a glossary, self-quizzing, an optional Pearson eText and more. http://www.masteringgeography.com
- **Pearson eText** gives students access to the text wherever they have access to the Internet. Users can create notes, highlight text, and click hyperlinked words to view definitions. The Pearson eText also allows for quick navigation and provides full-text search.

We also offer prebuilt assignments for instructors to make it easy to assign this powerful tutorial and homework system. The Mastering platform is the only online tutorial/homework system with research showing that it improves student learning. A wide variety of published papers based on NSF-sponsored research and tests illustrate the benefits of the Mastering program. Results documented in scientifically valid efficacy papers are available at www.masteringgeography.com/site/results.

CourseSmart CourseSmart goes beyond traditional expectations—providing instant, online access to the textbooks and course materials you need at a lower cost for students. And even as students save money, you can save time and hassle with a digital eTextbook that allows you to search for the most relevant content at the very moment you need it. Whether it's reading textbooks or creating lecture notes to help students with difficult concepts, CourseSmart can make life a little easier. See how when you visit www.coursesmart.com/instructors.

Television for the Environment Earth Report Geography Videos on DVD (0321662989). This three-DVD set helps students visualize how human decisions and behavior have affected the environment and how individuals are taking steps toward recovery. With topics ranging from the poor land management promoting the devastation of river systems in Central America to the struggles for electricity in China and Africa, these 13 videos from Television for the Environment’s global Earth Report series recognize the efforts of individuals around the world to unite and protect the planet.

Geoscience Animation Library 5th edition DVD-ROM (0321716841). Created through a unique collaboration among Pearson’s leading geoscience authors, this resource offers over 100 animations covering the most difficult-to-visualize topics in physical geology, physical geography, oceanography, meteorology, and earth science. The animations are provided as Flash files and preloaded into PowerPoint(R) slides for both Windows and Mac.

Practicing Geography: Careers for Enhancing Society and the Environment by Association of American Geographers (0321811151). This book examines career opportunities for geographers and geospatial professionals in the business, government, nonprofit, and education sectors. A diverse group of academic and industry professionals shares insights on career planning, networking, transitioning between employment sectors, and balancing work and home life. The book illustrates the value of geographic expertise and technologies through engaging profiles and case studies of geographers at work.

Teaching College Geography: A Practical Guide for Graduate Students and Early Career Faculty by Association of American Geographers (0136054471). This two-part resource provides a starting point for becoming an effective geography teacher from the very first day of class. Part One addresses “nuts-and-bolts” teaching issues. Part Two explores being an effective teacher in the field, supporting critical thinking with GIS and mapping technologies, engaging learners in large geography classes, and promoting awareness of international perspectives and geographic issues.

Aspiring Academics: A Resource Book for Graduate Students and Early Career Faculty by Association of American Geographers (0136048919). Drawing on several years of research, this set of essays is designed to help graduate students and early career faculty start their careers in geography and related social and environmental sciences. Aspiring Academics stresses the interdependence of teaching, research, and service—and the importance of achieving a healthy balance of professional and personal life—while doing faculty work. Each chapter provides accessible, forward-looking advice on topics that often cause the most stress in the first years of a college or university appointment.

For Students

Applied Physical Geography—Geosystems in the Laboratory, Ninth Edition (0321987284) by Charlie Thomsen and
Robert Christopherson. A variety of exercises provides flexibility in lab assignments. Each exercise includes key terms and learning concepts linked to Geosystems. The ninth edition includes new exercises on climate change, a fully updated exercise on basic GIS using ArcGIS online, and more integrated media, including Google Earth and Quick Response (QR) codes. Supported by a website with media resources needed for exercises, as well as a downloadable Solutions Manual for teachers.

Companion website for Applied Physical Geography: Geosystems in the Laboratory. The website for lab manual provides online worksheets as well as KMZ files for all of the Google Earth® exercises found in the lab manual. www.mygeoscienceplace.com

Goode’s World Atlas, 22nd Edition (0321652002). *Goode’s World Atlas* has been the world’s premier educational atlas since 1923—and for good reason. It features over 250 pages of maps, from definitive physical and political maps to important thematic maps that illustrate the spatial aspects of many important topics. The 22nd Edition includes 160 pages of digitally produced reference maps, as well as thematic maps on global climate change, sea-level rise, CO₂ emissions, polar ice fluctuations, deforestation, extreme weather events, infectious diseases, water resources, and energy production.

Pearson’s Encounter Series provides rich, interactive explorations of geoscience concepts through Google Earth activities, covering a range of topics in regional, human, and physical geography. For those who do not use *MasteringGeography*, all chapter explorations are available in print workbooks, as well as in online quizzes at www.mygeoscienceplace.com, accommodating different classroom needs. Each exploration consists of a worksheet, online quizzes whose results can be emailed to teachers, and a corresponding Google Earth KMZ file.

- *Encounter Physical Geography* by Jess C. Porter and Stephen O’Connell (0321672526)
- *Encounter Geosystems* by Charlie Thomsen (0321636996)
- *Encounter World Regional Geography* by Jess C. Porter (0321681754)
- *Encounter Human Geography* by Jess C. Porter (0321682203)
- *Encounter Earth* by Steve Kluge (0321581296)

Dire Predictions: Understanding Global Warming by Michael Mann, Lee R. Kump (0133909778). Appropriate for any science or social science course in need of a basic understanding of the reports from the Intergovernmental Panel on Climate Change (IPCC). These periodic reports evaluate the risk of climate change brought on by humans. But the sheer volume of scientific data remains inscrutable to the general public, particularly to those who still question the validity of climate change. In just over 200 pages, this practical text presents and expands upon the essential findings in a visually stunning and undeniably powerful way to the lay reader. Scientific findings that provide validity to the implications of climate change are presented in clear-cut graphic elements, striking images, and understandable analogies.

For Teachers

Learning Catalytics is a “bring your own device” student engagement, assessment, and classroom intelligence system. With Learning Catalytics, you can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Improve your students’ critical-thinking skills.
- Access rich analytics to understand student performance.
- Add your own questions to make Learning Catalytics fit your course exactly.
- Manage student interactions with intelligent grouping and timing.

Learning Catalytics is a technology that has grown out of twenty years of cutting-edge research, innovation, and implementation of interactive teaching and peer instruction. Available integrated with *MasteringGeography*.

Instructor Resource Manual by Mary-Louise Byrne, Wilfrid Laurier University. Includes lecture outlines and key terms, additional source materials, teaching tips, and a complete annotation of chapter review questions.

Computerized Test Bank by Mary-Louise Byrne, Wilfrid Laurier University. Pearson’s computerized test banks allow instructors to filter and select questions to create quizzes, tests, or homework. Instructors can revise questions or add their own, and may be able to choose print or online options. These questions are also available in Microsoft Word format.

Lecture Outline PowerPoint™ Presentations by Khaled Hamdan, Kwnten Polytechnic University. Outlines the concepts of each chapter with embedded art and can be customized to fit teachers’ lecture requirements.

Image Library contains all textbook images as JPEGs for instructors to use when personalizing their PowerPoint™ Presentations.

These instructor resources are also available online via the Instructor Resources section of *MasteringGeography* and http://catalogue.pearsoned.ca/.

Pearson Custom Library For enrollments of at least 25 students, you can create your own textbook by choosing the chapters that best suit your own course needs. To begin building your custom text, visit www.pearsoncustomlibrary.com. You may also work with a dedicated Pearson custom editor to create your ideal text—publishing your own original content or mixing and matching Pearson content. Contact your local Pearson representative to get started.

Learning Solutions Managers Pearson’s Learning Solutions Managers work with faculty and campus course designers to ensure that Pearson technology products, assessment tools, and online course materials are tailored to meet your specific needs. This highly qualified team is dedicated to helping schools take full advantage of a wide range of educational resources, by assisting in the integration of a variety of instructional materials and media formats. Your local Pearson Education sales representative can provide you with more details on this service program.
In March 2013, scientists began the fifth year and modern science, Geosystems combines a structured learning path, student-friendly writing, current applications, outstanding visuals, and a strong multimedia program for a truly unique physical geography experience.

NEW! Chapter 11: Climate Change. Incorporating the latest climate change science and data, this new chapter covers paleoclimatology and mechanisms for past climatic change, climate feedbacks and the global carbon budget, the evidence and causes of present climate change, climate forecasts and models, and actions that we can take to moderate Earth’s changing climate.
Visualizing Processes and Landscapes

NEW! Geosystems in Action present highly-visual presentations of core physical processes and critical chapter concepts. These features include links to mobile-ready media and MasteringGeography, as well as GeoQuizzes and integrated active learning tasks that ask students to analyze, explain, infer, or predict based on the information presented.

An unparalleled visual program includes a variety of illustrations, maps, photographs, and composites, providing authoritative examples and applications of physical geography and Earth systems science.
Humans Explore the Atmosphere

Astronaut Neil Armstrong, on a spacecraft from the Soviet Union's Soyuz program, descended to the surface of the Moon in 1969. In 2002, 30 years after leaving the Moon, Armstrong returned to a university in New Mexico for a series of classes. The purpose of the trip was to educate students about space exploration and to inspire them to pursue careers in the field. The trip was part of a broader effort to bring Zukunft, the future, to the students and the public.

Eustace's Record-Setting Jump

Eustace's record-setting jump was described as a "giant leap for mankind." It was a test of the ability of National Aeronautics and Space Administration (NASA) scientists to ensure that a space suit could protect astronauts from the rigors of space travel.

Protection in a Spacesuit

Recent jumps by Baumgartner and Eustace have captured the attention of the world. Both jumps have set free-fall height and speed records.

Record-Breaking Jumps

Figure GN 3.3 Felix Baumgartner's jump set free-fall height and speed record in 2014.

Figure 13.1.1 Plate tectonic setting of the Pacific coast of Canada.

Figure 13.1.2 Felix Baumgartner's jump set free-fall height and speed record. (a) Eustace on a training jump.

Plate tectonic setting of the Pacific coast of Canada.

The Pacific coast is the most seismically active region of Canada. The region is one of the few areas in the world where subduction, convergent, and transform plate boundaries occur in proximity to one another (Figure 13.1). In July 2012, 11 earthquakes of magnitude 7 or greater occurred in the Pacific Northwest.

Farther north, in a region extending from the northern tip of Vancouver Island to northern Canada, there are small, unpressurized compartments floaters. This protected his ability to duplicate the Earth's atmosphere.

At 31.3 km altitude, floating from a high-speed polyester cloth. His speed was remarkable, quickly surpassing the equator of a human being using this cloth. Crossing the vacuum of space all around him. Where the Sun is 17 seconds.

When his free fall reached the stratosphere, Eustace survived using a specially designed suit to maintain an internal air pressure of 1342 kPa, which is roughly 90% helium.

Eustace's speed was 1342 km/h, reaching a top velocity of 1342 kPa, which roughly 90% helium.

Figure 13.1.3 Assembly of a pressure suit with a pressure sensor section.

Figure 13.1.4 Felix Baumgartner's jump set free-fall height and speed record. (b) Baumgartner on a training jump.

The Pacific coast is the most seismically active region of Canada. The region is one of the few areas in the world where subduction, convergent, and transform plate boundaries occur in proximity to one another (Figure 13.1). In July 2012, 11 earthquakes of magnitude 7 or greater occurred in the Pacific Northwest.

Farther north, in a region extending from the northern tip of Vancouver Island to northern Canada, there are small, unpressurized compartments floaters. This protected his ability to duplicate the Earth's atmosphere.

At 31.3 km altitude, floating from a high-speed polyester cloth. His speed was remarkable, quickly surpassing the equator of a human being using this cloth. Crossing the vacuum of space all around him. Where the Sun is 17 seconds.

When his free fall reached the stratosphere, Eustace survived using a specially designed suit to maintain an internal air pressure of 1342 kPa, which is roughly 90% helium.

Eustace's speed was 1342 km/h, reaching a top velocity of 1342 kPa, which roughly 90% helium.

Figure 13.1.3 Assembly of a pressure suit with a pressure sensor section.

Figure 13.1.4 Felix Baumgartner's jump set free-fall height and speed record. (b) Baumgartner on a training jump.

The Pacific coast is the most seismically active region of Canada. The region is one of the few areas in the world where subduction, convergent, and transform plate boundaries occur in proximity to one another (Figure 13.1). In July 2012, 11 earthquakes of magnitude 7 or greater occurred in the Pacific Northwest.

Farther north, in a region extending from the northern tip of Vancouver Island to northern Canada, there are small, unpressurized compartments floaters. This protected his ability to duplicate the Earth's atmosphere.

At 31.3 km altitude, floating from a high-speed polyester cloth. His speed was remarkable, quickly surpassing the equator of a human being using this cloth. Crossing the vacuum of space all around him. Where the Sun is 17 seconds.

When his free fall reached the stratosphere, Eustace survived using a specially designed suit to maintain an internal air pressure of 1342 kPa, which is roughly 90% helium.

Eustace's speed was 1342 km/h, reaching a top velocity of 1342 kPa, which roughly 90% helium.

Figure 13.1.3 Assembly of a pressure suit with a pressure sensor section.

Figure 13.1.4 Felix Baumgartner's jump set free-fall height and speed record. (b) Baumgartner on a training jump.
Tools for Structured Learning

Geosystems provides a structured learning path that helps students achieve a deeper understanding of physical geography through active learning.

KEY LEARNING CONCEPTS

After reading the chapter, you should be able to:

• Sketch a basic drainage basin model, and identify different types of drainage patterns by visual examination.
• Explain the concepts of stream gradient and base level, and describe the relationship between stream velocity, depth, width, and discharge.
• Explain the processes involved in fluvial erosion and sediment transport.
• Describe common stream channel patterns, and explain the concept of a graded stream.
• Describe the depositional landforms associated with floodplains and alluvial fan environments.
• List and describe several types of river deltas, and explain flood probability estimates.

A Quantitative Solution at the end of each chapter leads students through an exercise by using a quantitative approach to solve a problem.

A Quantitative Solution

Flood Frequency Analysis

The degree to which any phenomenon is a hazard depends on its magnitude and frequency of occurrence. The frequency with which a flood of a certain magnitude or higher can be expected to occur is called its recurrence interval. Recurrence intervals can be determined either long-term mean or by using records of stream discharge for a region or the drainage basin of interest, during a period of record. A recent method for estimating a recurrence interval is the method of maximum likelihood, which fits statistical distributions to a set of data. A statistical distribution is a function of the recurrence interval, which is the number of floods of the given magnitude or higher to occur on a regular cycle of once every 7 to 8 years. Sometimes the recurrence interval is rounded to the next lower power of 10. Thus, for a flood of magnitude 425 m³·s⁻¹ to be expected on average once every 7 years, we express the recurrence interval as 10 years.

The degree to which any phenomenon is a hazard depends on its magnitude and frequency of occurrence. The frequency with which a flood of a certain magnitude or higher can be expected to occur is called its recurrence interval. Recurrence intervals can be determined either long-term mean or by using records of stream discharge for a region or the drainage basin of interest, during a period of record. A recent method for estimating a recurrence interval is the method of maximum likelihood, which fits statistical distributions to a set of data. A statistical distribution is a function of the recurrence interval, which is the number of floods of the given magnitude or higher to occur on a regular cycle of once every 7 to 8 years. Sometimes the recurrence interval is rounded to the next lower power of 10. Thus, for a flood of magnitude 425 m³·s⁻¹ to be expected on average once every 7 years, we express the recurrence interval as 10 years.

Statistically, we then expect a flood of magnitude 425 m³·s⁻¹ to happen exactly once every 7 years. A flood of magnitude 198 m³·s⁻¹ has a recurrence interval of 10 years. The expected value of the flood discharge is the sum of the expected values of the individual floods in the series. The expected value of the flood discharge for a recurrence interval of 10 years is the mean of the flood discharge for a period of record, or the mean of the flood discharge for a period of record plus a certain magnitude. The expected value of the flood discharge for a period of record plus a certain magnitude is the sum of the expected values of the individual floods in the series. The expected value of the flood discharge for a period of record plus a certain magnitude is the sum of the expected values of the individual floods in the series. The expected value of the flood discharge for a period of record plus a certain magnitude is the sum of the expected values of the individual floods in the series.

Key Learning Concepts

A Key Learning Concepts review at the end of each chapter concludes the learning path and features summaries, narrative definitions, a list of key terms with page numbers, and review questions.

Critical Thinking Activities

Critical Thinking Activities integrated throughout chapter sections give students an opportunity to stop, check, and apply their understanding.

Geosystems Connection

Geosystems Connection at the end of chapters help students bridge concepts between chapters, reminding them where they have been and where they are going.

Geosystems Connection

While following the flow of water through streams, we examined fluvial processes and landforms and the river-system outputs of discharge and sediment. We saw that a scientific understanding of river dynamics, fluvial landscape, and related flood hazards is integral to society’s ability to perceive hazards in the familiar environments we inhabit. In the next chapter, we examine the erosional activities of waves, tides, currents, and wind as they sculpt Earth’s coastlines and desert regions. A significant portion of the human population lives in coastal areas, making the difficulties of hazard perception and the need to plan for the future, given a rising sea level, important aspects of Chapter 16.
Mastering Geography™

Mastering Geography delivers engaging, dynamic learning opportunities—focusing on course objectives and responsive to each student’s progress—that are proven to help students absorb geography course material and understand difficult physical processes and geographic concepts.

Visualize the Processes and Landscapes That Form Earth’s Physical Environment

- **Encounter Activities** provide rich, interactive explorations of geography concepts using the dynamic features of Google Earth™ to visualize and explore Earth’s physical landscape. Available with multiple-choice and short answer questions. All Explorations include corresponding Google Earth KMZ media files, and questions include hints and specific wrong-answer feedback to help coach students toward mastery of the concepts.

- **Geoscience Animations** illuminate the most difficult-to-visualize topics from across the physical geosciences, such as solar system formation, hydrologic cycle, plate tectonics, glacial advance and retreat, global warming, etc. Animations include audio narration, a text transcript, and assignable multiple-choice quizzes with specific wrong-answer feedback to help guide students toward mastery of these core physical process concepts. Icons integrated throughout the text indicate to students when they can login to the Study Area of Mastering Geography to access the animations.
Engage in Map Reading, Data Analysis, and Critical Thinking

MapMaster is a powerful tool that presents assignable layered thematic and place name interactive maps at world and regional scales for students to test their geographic literacy, map reading, data analysis, and spatial reasoning skills.

MapMaster Layered Thematic Interactive Map Activities allow students to layer various thematic maps to analyze spatial patterns and data at regional and global scales. Available with assignable and customizable multiple-choice and short-answer questions organized around the textbook topics and concepts. This GIS-like tool includes zoom and annotation functionality, with hundreds of map layers leveraging recent data from sources such as NOAA, NASA, USGS, U.S. Census Bureau, United Nations, CIA, World Bank, and the Population Reference Bureau.

Thinking Spatially & Data Analysis and NEW GeoTutor Activities help students master the toughest geographic concepts and develop both spatial reasoning and critical thinking skills. Students identify and label features from maps, illustrations, graphs, and charts, examine related data sets, and answer higher-order conceptual questions, which include hints and specific wrong-answer feedback.

Videos provide students with a sense of place and allow them to explore a range of locations and topics. Covering physical processes and critical issues such as climate and climate change, renewable energy resources, economy and development, culture, and globalization, these video activities include assignable questions, with many including hints and specific wrong-answer feedback.

Student Study Area Resources in MasteringGeography:
- Geoscience Animations
- MapMaster™ interactive maps
- Videos
- Practice quizzes
- “In the News” RSS feeds
- Optional Pearson eText and more
With the Mastering gradebook and diagnostics, you’ll be better informed about your students’ progress than ever before. Mastering captures the step-by-step work of every student—including wrong answers submitted, hints requested, and time taken at every step of every problem—all providing unique insight into the most common misconceptions of your class.

- The Gradebook records all scores for automatically graded assignments. Shades of red highlight struggling students and challenging assignments.

- Diagnostics provide unique insight into class and student performance. With a single click, charts summarize the most difficult questions, vulnerable students, grade distribution, and score improvement over the duration of the course.

- With a single click, Individual Student Performance Data provide at-a-glance statistics into each individual student’s performance, including time spent on the question, number of hints opened, and number of wrong and correct answers submitted.
Learning Outcomes

MasteringGeography provides quick and easy access to information on student performance against your learning outcomes and makes it easy to share those results.

- Quickly add your own learning outcomes, or use publisher provided ones, to track student performance and report it to your administration.
- View class and individual student performance against specific learning outcomes.
- Effortlessly export results to a spreadsheet that you can further customize and/or share with your chair, dean, administrator, and/or accreditation board.

Easy to customize

Customize publisher-provided items or quickly add your own. MasteringGeography makes it easy to edit any questions or answers, import your own questions, and quickly add images, links, and files to further enhance the student experience.

Upload your own video and audio files from your hard drive to share with students, as well as record video from your computer’s webcam directly into MasteringGeography—no plugins required. Students can download video and audio files to their local computer or launch them in Mastering to view the content.

Learning Catalytics

Learning Catalytics is a “bring your own device” student engagement, assessment, and classroom intelligence system. With Learning Catalytics you can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Improve your students’ critical-thinking skills.
- Access rich analytics to understand student performance.
- Add your own questions to make Learning Catalytics fit your course exactly.
- Manage student interactions with intelligent grouping and timing.

Learning Catalytics is a technology that has grown out of twenty years of cutting edge research, innovation, and implementation of interactive teaching and peer instruction. Available integrated with MasteringGeography or standalone.

Pearson eText gives students access to Geosystems Fourth Canadian Edition whenever and wherever they can access the Internet. The eText pages look exactly like the printed text, and include powerful interactive and customization functions. Users can create notes, highlight text in different colors, create bookmarks, zoom, click hyperlinked words and phrases to view definitions, and view as a single page or as two pages.

Pearson eText also links students to associated media files, enabling them to view an animation as they read the text, and offers a full-text search and the ability to save and export notes. The Pearson eText also includes embedded URLs in the chapter text with active links to the Internet.

The Pearson eText app is a great companion to Pearson’s eText browser-based book reader. It allows existing subscribers who view their Pearson eText titles on a Mac or PC to additionally access their titles in a bookshelf on the iPad and Android devices either online or via download.
Geosystems