BIOLOGICAL SCIENCE
Red-tailed Hawk, *Buteo jamaicensis*

The red-tailed hawk searches for a wide variety of small prey, capturing them by swooping from the air or diving from a stationary perch. Buteos like the red-tailed hawk are adapted for predation, with broad wings and tail for soaring flight, curved talons for grasping prey, large forward-rotated eyes for acute long-distance vision, and a sharp tearing beak. The red-tailed hawk’s colouration, which is darker above and paler underneath, camouflages it from below. The red-tailed hawk’s opportunistic hunting skills have helped it to be the most widely distributed hawk in North America.
Brief Contents

1. Biology and the Tree of Life 1

UNIT 1 THE MOLECULES OF LIFE 16

2. Water and Carbon: The Chemical Basis of Life 16
3. Protein Structure and Function 40
4. Nucleic Acids and the RNA World 62
5. An Introduction to Carbohydrates 75
6. Lipids, Membranes, and the First Cells 87

UNIT 2 CELL STRUCTURE AND FUNCTION 112

7. Inside the Cell 112
8. Cell–Cell Interactions 143
9. Cellular Respiration and Fermentation 163
10. Photosynthesis 188
11. The Cell Cycle 212

UNIT 3 GENE STRUCTURE AND EXPRESSION 232

12. Meiosis 232
13. Mendel and the Gene 252
14. DNA and the Gene: Synthesis and Repair 281
15. How Genes Work 300
16. Transcription, RNA Processing, and Translation 314
17. Control of Gene Expression in Bacteria 333
18. Control of Gene Expression in Eukaryotes 347
19. Analyzing and Engineering Genes 368
20. Genomics 392

UNIT 4 DEVELOPMENTAL BIOLOGY 410

22. An Introduction to Animal Development 426
23. An Introduction to Plant Development 440

UNIT 5 EVOLUTIONARY PROCESSES AND PATTERNS 455

24. Evolution by Natural Selection 455
25. Evolutionary Processes 477
26. Speciation 503
27. Phylogenies and the History of Life 521

UNIT 6 THE DIVERSIFICATION OF LIFE 546

28. Bacteria and Archaea 546
29. Protists 571
30. Green Algae and Land Plants 599
31. Fungi 635
32. An Introduction to Animals 660
33. Protostome Animals 684
34. Deuterostome Animals 709
35. Viruses 742

UNIT 7 HOW PLANTS WORK 764

36. Plant Form and Function 764
37. Water and Sugar Transport in Plants 788
38. Plant Nutrition 809
39. Plant Sensory Systems, Signals, and Responses 829
40. Plant Reproduction 860

UNIT 8 HOW ANIMALS WORK 883

41. Animal Form and Function 883
42. Water and Electrolyte Balance in Animals 904
43. Animal Nutrition 924
44. Gas Exchange and Circulation 946
45. Electrical Signals in Animals 973
46. Animal Sensory Systems and Movement 996
47. Chemical Signals in Animals 1019
48. Animal Reproduction 1041
49. The Immune System in Animals 1065

UNIT 9 ECOLOGY 1088

50. An Introduction to Ecology 1088
51. Behavioural Ecology 1121
52. Population Ecology 1141
53. Community Ecology 1166
54. Ecosystems 1193
55. Biodiversity and Conservation Biology 1219
Detailed Contents

About the Authors xx
Preface to Instructors xxi
Preface to Students: How to Use This Book xxxiv

1 Biology and the Tree of Life
1.1 What Does It Mean to Say That Something Is Alive? 1
1.2 The Cell Theory 2
1.3 The Theory of Evolution by Natural Selection 4
- What Is Evolution? 4
- What Is Natural Selection? 4
CANADIAN RESEARCH 1.1 Artificial Selection on Bighorn Sheep in Alberta 6
1.4 The Tree of Life 6
- Using Molecules to Understand the Tree of Life 7
- How Should We Name Branches on the Tree of Life? 9
1.5 Doing Biology 9
- Why Do Giraffes Have Long Necks? An Introduction to Hypothesis Testing 9
- How Do Ants Navigate? An Introduction to Experimental Design 11
CHAPTER REVIEW 13

UNIT 1 THE MOLECULES OF LIFE 16

2 Water and Carbon: The Chemical Basis of Life 16
2.1 Atoms, Ions, and Molecules: The Building Blocks of Chemical Evolution 17
- Basic Atomic Structure 17
- How Does Covalent Bonding Hold Molecules Together? 18
- Ionic Bonding, Ions, and the Electron-Sharing Continuum 19
- Some Simple Molecules Formed from C, H, N, and O 20
- The Geometry of Simple Molecules 21
- Representing Molecules 21
- Basic Concepts in Chemical Reactions 22
2.2 The Early Oceans and the Properties of Water 23
- Why Is Water Such an Efficient Solvent? 23
- How Does Water’s Structure Correlate with Its Properties? 23
- Acid–Base Reactions Involves a Transfer of Protons 26
2.3 Chemical Reactions, Chemical Evolution, and Chemical Energy 28
- How Do Chemical Reactions Happen? 28
- What Is Energy? 28
- Chemical Evolution: A Model System 30
- How Did Chemical Energy Change during Chemical Evolution? 34
2.4 The Importance of Carbon 34
- Linking Carbon Atoms Together 35
- Functional Groups 36

3 Protein Structure and Function 40
3.1 Early Origin-of-Life Experiments 41
3.2 Amino Acids and Polymerization 42
- The Structure of Amino Acids 42
- The Nature of Side Chains 42
- How Do Amino Acids Link to Form Proteins? 44
3.3 Proteins Are the Most Versatile Large Molecules in Cells 46
CANADIAN RESEARCH 3.1 Designing New Proteins 47
3.4 What Do Proteins Look Like? 47
- Primary Structure 48
- Secondary Structure 48
- Tertiary Structure 49
- Quaternary Structure 50
3.5 Enzymes: An Introduction to Catalysis 54
- Enzymes Help Reactions Clear Two Hurdles 55
- How Do Enzymes Work? 56
- Was the First Living Entity a Protein Catalyst? 59
CHAPTER REVIEW 60

4 Nucleic Acids and the RNA World 62
4.1 What Is a Nucleic Acid? 62
- Could Chemical Evolution Result in the Production of Nucleotides? 63
- How Do Nucleotides Polymerize to Form Nucleic Acids? 64
4.2 DNA Structure and Function 65
- What Is the Nature of DNA’s Secondary Structure? 66
- DNA Functions as an Information-Containing Molecule 67
- Is DNA a Catalytic Molecule? 69
4.3 RNA Structure and Function 69
- Structurally, RNA Differs from DNA 69
- RNA’s Structure Makes It an Extraordinarily Versatile Molecule 70
- RNA Is an Information-Containing Molecule 71
- RNA Can Function as a Catalytic Molecule 71
4.4 The First Life Form 71
CANADIAN RESEARCH 4.1 Designing New Deoxyribozymes 72
CHAPTER REVIEW 73

5 An Introduction to Carbohydrates 75
5.1 Sugars as Monomers 75
- How Monosaccharides Differ 76
- Monosaccharides and Chemical Evolution 76
9.5 The Citric Acid Cycle: Oxidizing Acetyl CoA to CO₂ 173
 How Is the Citric Acid Cycle Regulated? 173
 What Happens to the NADH and FADH₂? 173

9.6 Electron Transport and Chemiosmosis: Building a Proton Gradient to Produce ATP 176
 Components of the Electron Transport Chain 176
 The Chemiosmosis Hypothesis 177
 How Is the Electron Transport Chain Organized? 178
 The Discovery of ATP Synthase 178
 Organisms Use a Diversity of Electron Acceptors 179

9.8 How Does Cellular Respiration Interact with Other Metabolic Pathways? 184
 Catabolic Pathways Break Down Molecules as Fuel 184
 Anabolic Pathways Synthesize Key Molecules 185

10 Photosynthesis 188
10.1 Photosynthesis Harnesses Sunlight to Make Carbohydrate 188
 Photosynthesis: Two Linked Sets of Reactions 189
 Photosynthesis Occurs in Chloroplasts 190
10.2 How Does Chlorophyll Capture Light Energy? 190
 Photosynthetic Pigments Absorb Light 191
 When Light Is Absorbed, Electrons Enter an Excited State 193
10.3 The Discovery of Photosystems I and II 195
 How Does Photosystem II Work? 196
 How Does Photosystem I Work? 198
 The Z Scheme: Photosystems II and I Work Together 198
10.4 How Is Carbon Dioxide Reduced to Produce Glucose? 200
 The Calvin Cycle Fixes Carbon 201
 The Discovery of Rubisco 202
 Carbon Dioxide Enters Leaves through Stomata 203
 Mechanisms for Increasing CO₂ Concentration Near Rubisco 204
 How Is Photosynthesis Regulated? 205
 What Happens to the Sugar That Is Produced by Photosynthesis? 205

11 The Cell Cycle 212
11.1 Mitosis and the Cell Cycle 213
 What Is a Chromosome? 213
 Cells Alternate between M Phase and Interphase 214
 The Discovery of S Phase 214
 The Discovery of the Gap Phases 214
 The Cell Cycle 214

12 Meiosis 232
12.1 How Does Meiosis Occur? 233
 Chromosomes Come in Distinct Types 233
 The Concept of Ploidy 233
 An Overview of Meiosis 234
 The Phases of Meiosis I 237
 The Phases of Meiosis II 238
 A Closer Look at Prophase I 241
12.2 The Consequences of Meiosis 242
 Chromosomes and Heredity 243
 Independent Assortment Produces Genetic Variation 243
 A Benefit of Crossing Over 244
 How Does Fertilization Affect Genetic Variation? 244
12.3 Why Does Meiosis Exist? 245
 The Paradox of Sex 245
 The Purifying Selection Hypothesis 245
 The Changing-Environment Hypothesis 246
12.4 Mistakes in Meiosis 247
 How Do Mistakes Occur? 247
 Why Do Mistakes Occur? 248

13 Mendel and the Gene 252
13.1 Mendel’s Experimental System 252
 What Questions Was Mendel Trying to Answer? 253
 Garden Peas Served as the First Model Organism in Genetics 253
13.2 Mendel’s Experiments with a Single Trait 254
 The Monohybrid Cross 254
 Particulate Inheritance 256
13.3 Mendel’s Experiments with Two Traits 258
 The Dihybrid Cross 258
 Using a Testcross to Confirm Predictions 260
13.4 The Chromosome Theory of Inheritance 261
 Meiosis Explains Mendel’s Principles 261
 Testing the Chromosome Theory 263
18.3 Initiating Transcription: Regulatory Sequences and Regulatory Proteins 351
Some Regulatory Sequences Are Near the Promoter 351
Some Regulatory Sequences Are Far from the Promoter 352
The Role of Regulatory Proteins in Differential Gene Expression 354
The Initiation Complex 354
18.4 Posttranscriptional Control 356
Alternative Splicing of mRNAs 356
mRNA Stability and RNA Interference 357
How Is Translation Controlled? 358
Posttranslational Control 358
18.5 How Does Gene Expression in Bacteria Compare with That in Eukaryotes? 359
18.6 Linking Cancer with Defects in Gene Regulation 360
Causes of Uncontrolled Cell Growth 360
p53: A Case Study 361
CANADIAN RESEARCH 18.1 Chromatin Remodelling, Gene Transcription, and Cancer 362
CHAPTER REVIEW 363
The Big Picture: Genetic Information 366

19 Analyzing and Engineering Genes 368
19.1 Case 1—The Effort to Cure Pituitary Dwarfism: Basic Recombinant DNA Technologies 368
Why Did Early Efforts to Treat the Disease Fail? 369
Steps in Engineering a Safe Supply of Growth Hormone 369
19.2 Case 2—Amplification of Fossil DNA: The Polymerase Chain Reaction 374
Requirements of PCR 374
PCR in Action 375
CANADIAN RESEARCH 19.1 Ancient DNA in Canada 376
19.3 Case 3—Sanger’s Breakthrough Innovation: Dideoxy DNA Sequencing 377
The Logic of Dideoxy Sequencing 378
"Next-Generation” Sequencing 379
CANADIAN RESEARCH 19.2 Michael Smith and the Invention of Site-Directed Mutagenesis 379
19.4 Case 4—The Huntington’s Disease Story: Finding Genes by Mapping 381
How Was the Huntington’s Disease Gene Found? 381
What Are the Benefits of Finding a Disease Gene? 383
Ethical Concerns over Genetic Testing 383
19.5 Case 5—Severe Immune Disorders: The Potential of Gene Therapy 385
How Can Novel Alleles Be Introduced into Human Cells? 385
Using Gene Therapy to Treat X-Linked Immune Deficiency 386
Ethical Concerns over Gene Therapy 387
19.6 Case 6—The Development of Golden Rice: Biotechnology in Agriculture 387
Rice as a Target Crop 388
Synthesizing β-Carotene in Rice 388
The Agrobacterium Transformation System 388
Using the Ti Plasmid to Produce Golden Rice 389
CHAPTER REVIEW 389

20 Genomics 392
20.1 Whole-Genome Sequencing 392
How Are Complete Genomes Sequenced? 393
Which Genomes Are Being Sequenced, and Why? 394
Which Sequences Are Genes? 395
20.2 Bacterial and Archaeal Genomes 396
The Natural History of Prokaryotic Genomes 396
Lateral Gene Transfer 397
Environmental Sequencing 397
CANADIAN ISSUES 20.1 Genome Canada 398
20.3 Eukaryotic Genomes 398
Parasitic and Repeated Sequences 399
Gene Families 401
Insights from the Human Genome Project 402
CANADIAN RESEARCH 20.1 Human Genetic Variation 404
20.4 Functional Genomics and Proteomics 406
What Is Proteomics? 406
Applied Genomics in Action: Understanding Cancer 407
CHAPTER REVIEW 408

UNIT 4 DEVELOPMENTAL BIOLOGY 410
21 Principles of Development 410
21.1 Shared Developmental Processes 411
Cell Proliferation 411
Programmed Cell Death 412
Cell Movement or Cell Growth 412
Cell Differentiation 413
Cell–Cell Interactions 413
21.2 The Role of Differential Gene Expression in Development 413
Evidence That Differentiated Plant Cells Are Genetically Equivalent 413
Evidence That Differentiated Animal Cells Are Genetically Equivalent 413
How Does Differential Gene Expression Occur? 414
CANADIAN RESEARCH 21.1 The First Cloned Drosophila 415
21.3 Cell–Cell Signals Trigger Differential Gene Expression 415
Master Regulators Set Up the Major Body Axes 416
Regulatory Genes Provide Increasingly Specific Positional Information 417
Cell–Cell Signals and Regulatory Genes Are Evolutionarily Conserved 419
CANADIAN RESEARCH 21.2 Stem Cells and Stem Cell Therapies 420
21.4 Changes in Developmental Pathways Underlie Evolutionary Change 423
CHAPTER REVIEW 424
30 Green Algae and Land Plants 599

30.1 Why Do Biologists Study the Green Algae and Land Plants? 599
- Plants Provide Ecosystem Services 600
- Plants Provide Humans with Food, Fuel, Fibre, Building Materials, and Medicines 601

30.2 How Do Biologists Study Green Algae and Land Plants? 602
- Analyzing Morphological Traits 602
- Using the Fossil Record 603
- Evaluating Molecular Phylogenies 604

30.3 What Themes Occur in the Diversification of Land Plants? 606
- The Transition to Land, I: How Did Plants Adapt to Dry Conditions? 606
- Mapping Evolutionary Changes on the Phylogenetic Tree 608
- The Transition to Land, II: How Do Plants Reproduce in Dry Conditions? 609

CANADIAN RESEARCH 30.1 Flowering Plants and Their Pollinators 617
- The Angiosperm Radiation 619

30.4 Key Lineages of Green Algae and Land Plants 620
- Green Algae 620
 - Nonvascular Plants (“Bryophytes”) 620
 - Seed Plants 621
 - Green algae > Ulvophyceae (Ulvophytes) 622
 - Green algae > Coleochaetophyceae (Coleochaetes) 622
 - Green algae > Charophyceae (Stoneworts) 623
 - Nonvascular Plants > Hepaticophyta (Liverworts) 623
 - Nonvascular Plants > Bryophyta (Mosses) 624
 - Nonvascular Plants > Anthocerophyta (Hornworts) 625
 - Seedless Vascular Plants > Lycophyta (Lycophytes, or Club Mosses) 625
 - Seedless Vascular Plants > Psilotophyta (Whisk Ferns) 626
 - Seedless Vascular Plants > Equisetophyta (or Sphenophyta) (Horsetails) 626
 - Seedless Vascular Plants > Pteridophyta (Ferns) 627
 - Seed Plants > Gymnosperms > Cycadophyta (Cycads) 628
 - Seed Plants > Gymnosperms > Ginkgophyta (Ginkgoes) 628
 - Seed Plants > Gymnosperms > Redwood Group (Redwoods, Junipers, Yews) 629
 - Seed Plants > Gymnosperms > Pinophyta (Pines, Spruces, Firs) 629
 - Seed Plants > Gymnosperms > Gnetophyta (Gnetophytes) 630
 - Seed Plants > Anthophyta (Angiosperms) 630
 - CANADIAN ISSUES 30.1 Canada’s National Tree Seed Centre 631

CHAPTER REVIEW 632

31 Fungi 635

31.1 Why Do Biologists Study Fungi? 636
- Fungi Provide Nutrients for Land Plants 636
- Fungi Speed the Carbon Cycle on Land 636
- Fungi Have Important Economic Impacts 637

31.2 How Do Biologists Study Fungi? 638
- Analyzing Morphological Traits 638

Evaluating Molecular Phylogenies 640
Experimental Studies of Mutualism 641

31.3 What Themes Occur in the Diversification of Fungi? 643
- Fungi Participate in Several Types of Mutualisms 643
 - CANADIAN ISSUES 31.1 Ectomycorrhizal Fungi Are Important in Regeneration of Forest Stands Following Clear-Cutting 645
 - CANADIAN RESEARCH 31.1 The Effect of Gap Size on Colonization of Conifer Seedling Roots by Ectomycorrhizal Fungi 646
- What Adaptations Make Fungi Such Effective Decomposers? 647
- Variation in Reproduction 648
- Four Major Types of Life Cycles 650

31.4 Key Lineages of Fungi 652
- Fungi > Microsporidia 652
- Fungi > Chytrids 653
- Fungi > Zygomycetes 654
- Fungi > Glomeromycota 654
- Fungi > Basidiomycota (Club Fungi) 655
- Fungi > Ascomycota > Lichen-Formers 656
- Fungi > Ascomycota > Non-lichen-Formers 657

CHAPTER REVIEW 658

32 An Introduction to Animals 660

32.1 Why Do Biologists Study Animals? 661
- Biological Importance 661
- Role in Human Health and Welfare 661

32.2 How Do Biologists Study Animals? 662
- Analyzing Comparative Morphology 662
- Evaluating Molecular Phylogenies 667

32.3 What Themes Occur in the Diversification of Animals? 669
- Sensory Organs 669
- Feeding 670
 - CANADIAN RESEARCH 32.1 The World’s Oldest Radula 672
- Movement 674
- Reproduction 676
- Life Cycles 676

32.4 Key Lineages of Animals: Non-bilaterian Groups 678
- Porifera (Sponges) 679
- Cnidaria (Jellyfish, Corals, Anemones, Hydroids) 680
- Ctenophora (Comb Jellies) 681
- Acoelomorpha (Acoels) 681

CHAPTER REVIEW 682

33 Protostome Animals 684

33.1 An Overview of Protostome Evolution 685
- What Is a Lophotrochozoan? 685
- What Is an Ecdysozoan? 686

33.2 Themes in the Diversification of Protostomes 686
- How Do Body Plans Vary among Phyla? 687
- The Water-to-Land Transition 688
- Adaptations for Feeding 689
- Adaptations for Moving 690

CHAPTER REVIEW 690

DETAILED CONTENTS xiii
39 Plant Sensory Systems, Signals, and Responses 829

39.1 Information Processing in Plants 830
 How Do Cells Receive and Transduce an External Signal? 830
 How Are Cell–Cell Signals Transmitted? 830
 How Do Cells Respond to Cell–Cell Signals? 831

39.2 Blue Light: The Phototropic Response 832
 Phototropins as Blue-Light Receptors 832
 Auxin as the Phototropic Hormone 832

39.3 Red and Far-Red Light: Germination and Stem Elongation 836
 The Red/Far-Red “Switch” 836
 Phytochromes as Red/Far-Red Receptors 837
 How Were Phytochromes Isolated? 837

CANADIAN RESEARCH 39.1 Plant Signalling Networks Help Influence Proper Growth 838

39.4 Gravity: The Gravitropic Response 839
 The Statolith Hypothesis 840
 Auxin as the Gravitropic Signal 840

39.5 How Do Plants Respond to Wind and Touch? 841
 Changes in Growth Patterns 841
 Movement Responses 841

39.6 Youth, Maturity, and Aging: The Growth Responses 842
 Auxin and Apical Dominance 842
 Cytokinins and Cell Division 843
 Gibberellins and ABA: Growth and Dormancy 844
 Brassinosteroids and Body Size 848
 Ethylene and Senescence 848
 An Overview of Plant Growth Regulators 849

39.7 Pathogens and Herbivores: The Defence Responses 851
 How Do Plants Sense and Respond to Pathogens? 851
 How Do Plants Sense and Respond to Herbivore Attack? 853

CHAPTER REVIEW 856
The Big Picture: How Vascular Plants Work 858

40 Plant Reproduction 860

40.1 An Introduction to Plant Reproduction 861
 Sexual Reproduction 861
 The Land Plant Life Cycle 861
 Asexual Reproduction 863

40.2 Reproductive Structures 863
 When Does Flowering Occur? 864
 The General Structure of the Flower 865
 How Are Female Gametophytes Produced? 867
 How Are Male Gametophytes Produced? 867

40.3 Pollination and Fertilization 869
 Pollination 869
 CANADIAN RESEARCH 40.1 The Mating Strategies of Flowering Plants 871
 Fertilization 873

40.4 The Seed 874
 Embryogenesis 874

CHAPTER REVIEW 875
The Big Picture: How Vascular Plants Work 888
44.5 The Circulatory System 961
What Is an Open Circulatory System? 961
What Is a Closed Circulatory System? 962
How Does the Heart Work? 964
CANADIAN ISSUES 44.1 The Risk Factors for Heart Attacks 967
Patterns in Blood Pressure and Blood Flow 968
CHAPTER REVIEW 970

45 Electrical Signals in Animals 973
45.1 Principles of Electrical Signalling 973
Types of Neurons in the Nervous System 974
The Anatomy of a Neuron 974
An Introduction to Membrane Potentials 975
BOX 45.1 Quantitative Methods: Using the Nernst Equation to
Calculate Equilibrium Potentials 976
How Is the Resting Potential Maintained? 976
Using Microelectrodes to Measure Membrane Potentials 977
What Is an Action Potential? 978
45.2 Dissecting the Action Potential 979
Distinct Ion Currents Are Responsible for Depolarization and
Repolarization 979
How Do Voltage-Gated Channels Work? 979
How Is the Action Potential Propagated? 981
45.3 The Synapse 983
Synapse Structure and Neurotransmitter Release 984
What Do Neurotransmitters Do? 985
Postsynaptic Potentials 985
CANADIAN RESEARCH 45.1 David Suzuki and the Discovery
of the Genes Encoding Neuron Proteins 987
45.4 The Vertebrate Nervous System 989
What Does the Peripheral Nervous System Do? 989
Functional Anatomy of the CNS 989
How Does Memory Work? 991
CHAPTER REVIEW 994

46 Animal Sensory Systems and Movement 996
46.1 How Do Sensory Organs Convey Information
to the Brain? 997
Sensory Transduction 997
Transmitting Information to the Brain 998
46.2 Hearing 998
How Do Sensory Cells Respond to Sound Waves and
Other Forms of Pressure? 998
The Mammalian Ear 999
Sensory Worlds: What Do Other Animals Hear? 1001
46.3 Vision 1002
The Insect Eye 1002
The Vertebrate Eye 1002
CANADIAN RESEARCH 46.1 Why Do Wind Farms Kill Bats? 1004
Sensory Worlds: Do Other Animals See Colour? 1008
46.4 Taste and Smell 1008
Taste: Detecting Molecules in the Mouth 1008
Olfaction: Detecting Molecules in the Air 1009
46.5 Movement 1010
Skeletomuscular Systems 1010
Muscle Types 1012

47 Chemical Signals in Animals 1019
47.1 Cell–Cell Signalling: An Overview 1019
Major Categories of Chemical Signals 1020
Hormone Signalling Pathways 1021
What Makes Up the Endocrine System? 1022
Chemical Characteristics of Hormones 1023
How Do Researchers Identify a Hormone? 1024
47.2 What Do Hormones Do? 1025
How Do Hormones Direct Developmental Processes? 1025
How Do Hormones Coordinate Responses to Environmental
Change? 1027
How Are Hormones Involved in Homeostasis? 1028
47.3 How Is the Production of Hormones Regulated? 1030
The Hypothalamus and Pituitary Gland 1031
Control of Adrenaline by Sympathetic Nerves 1033
47.4 How Do Hormones Act on Target Cells? 1033
Steroid Hormones Bind to Intracellular Receptors 1034
Hormones That Bind to Cell-Surface Receptors 1035
CANADIAN ISSUES 47.1 Estrogens in the Environment 1036
Why Do Different Target Cells Respond in Different Ways? 1038
CHAPTER REVIEW 1039

48 Animal Reproduction 1041
48.1 Asexual and Sexual Reproduction 1041
How Does Asexual Reproduction Occur? 1042
Switching Reproductive Modes: A Case History 1042
Mechanisms of Sexual Reproduction: Gametogenesis 1043
48.2 Fertilization and Egg Development 1045
External Fertilization 1045
Internal Fertilization 1045
Unusual Aspects of Mating 1046
Why Do Some Females Lay Eggs While Others Give Birth? 1047
48.3 Reproductive Structures and Their Functions 1048
The Male Reproductive System 1048
The Female Reproductive System 1050
48.4 The Role of Sex Hormones in Mammalian Reproduction 1051
Which Hormones Control Puberty in Mammals? 1052
Which Hormones Control the Menstrual Cycle in
Mammals? 1053
48.5 Pregnancy and Birth in Mammals 1058
Gestation and Early Development in Marsupials 1058
Major Events during Human Pregnancy 1058
How Does the Mother Nourish the Fetus? 1059
Birth 1061
CHAPTER REVIEW 1063

49 The Immune System in Animals 1065
49.1 Innate Immunity 1066
Barriers to Entry 1066

DETAILED CONTENTS xvii
50.5 Biogeography: Why Are Organisms Found Where They Are? 1110
Abiotic Factors 1110
CANADIAN ISSUES 50.1 Do Insect Outbreaks Contribute to Climate Change? 1111
The Role of History 1113
CANADIAN RESEARCH 50.2 Salmon Migration in a Warming World 1114
Biotic Factors 1115
Biotic and Abiotic Factors Interact 1116
CHAPTER REVIEW 1118

51 Behavioural Ecology 1121
51.1 An Introduction to Behavioural Ecology 1121
Proximate and Ultimate Causation 1122
Conditional Strategies and Decision Making 1122
CANADIAN RESEARCH 51.1 Do Male Redback Spiders Benefit from Being Eaten by Their Mates? 1123
Five Questions in Behavioural Ecology 1124
51.2 What Should I Eat? 1124
Foraging Alleles in Drosophila melanogaster 1124
Optimal Foraging in White-Fronted Bee-Eaters 1125
51.3 Whom Should I Mate With? 1125
Sexual Activity in Anolis Lizards 1126
How Do Female Barn Swallows Choose Mates? 1127
51.4 Where Should I Live? 1129
How Do Animals Find Their Way on Migration? 1129
Why Do Animals Move with a Change of Seasons? 1130
51.5 How Should I Communicate? 1130
Honeybee Language 1131
Modes of Communication 1132
When Is Communication Honest or Deceitful? 1133
51.6 When Should I Cooperate? 1134
Kin Selection 1134
BOX 51.1 Quantitative Methods: Calculating the Coefficient of Relatedness 1136
Reciprocal Altruism 1136
An Extreme Case: Abuse of Non-Kin in Humans 1137
CHAPTER REVIEW 1138

52 Population Ecology 1141
52.1 Demography 1141
Life Tables 1142
CANADIAN RESEARCH 52.1 Tyrannosaur Life Tables 1144
The Role of Life History 1145
BOX 52.1 Quantitative Methods: Using Life Tables to Calculate Population Growth Rates 1146
52.2 Population Growth 1147
Quantifying the Growth Rate 1147
Exponential Growth 1148
Logistic Growth 1148
BOX 52.2 Quantitative Methods: Developing and Applying Population Growth Equations 1149
What Limits Growth Rates and Population Sizes? 1151
52.3 Population Dynamics 1152
DETAILED CONTENTS

55 Biodiversity and Conservation Biology 1219

55.1 What Is Biodiversity? 1220
Biodiversity Can Be Measured and Analyzed at Several Levels 1220
How Many Species Are Living Today? 1221
BOX 55.1 Quantitative Methods: Extrapolation Techniques 1222

55.2 Where Is Biodiversity Highest? 1223
Hotspots of Biodiversity and Conservation 1223

55.3 Threats to Biodiversity 1224
Changes in the Nature of the Problem 1224
CANADIAN ISSUES 55.1 SARA—Canada’s Species at Risk Act 1224
How Can Biologists Predict Future Extinction Rates? 1229
CANADIAN ISSUES 55.2 Polar Bears in a Warming Arctic 1230
BOX 55.2 Quantitative Methods: Population Viability Analysis 1232

55.4 Why Is Biodiversity Important? 1233
Economic Benefits of Biodiversity 1233
Biological Benefits of Biodiversity 1234
An Ethical Dimension? 1236

55.5 Preserving Biodiversity 1236
Designing Effective Protected Areas 1237
Beyond Protected Areas: A Comprehensive Approach 1237
CANADIAN RESEARCH 55.1 A Solution to the Problem of Habitat Fragmentation 1238
CHAPTER REVIEW 1242

The Big Picture: Ecology 1244

APPENDIX A: Answers A:1
APPENDIX B: BioSkills B:1
1 The Metric System B:1
2 Reading Graphs B:2
3 Reading a Phylogenetic Tree B:4
4 Some Common Latin and Greek Roots Used in Biology B:6
5 Using Statistical Tests and Interpreting Standard Error Bars B:6
6 Reading Chemical Structures B:7
7 Using Logarithms B:9
8 Making Concept Maps B:9
9 Separating and Visualizing Molecules B:10
10 Biological Imaging: Microscopy and X-Ray Crystallography B:13
11 Separating Cell Components by Centrifugation B:16
12 Cell and Tissue Culture Methods B:17
13 Combining Probabilities B:18
14 Model Organisms B:19

Glossary G:1
Credits C:1
Index I:1

DETAILED CONTENTS xix
SCOTT FREEMAN received his Ph.D. in Zoology from the University of Washington and was subsequently awarded an Alfred P. Sloan Postdoctoral Fellowship in Molecular Evolution at Princeton University. His current research focuses on the scholarship of teaching and learning—specifically (1) how active learning and peer teaching techniques increase student learning and improve performance in introductory biology and (2) how the levels of exam questions vary among introductory biology courses, standardized postgraduate entrance exams, and professional school courses. He has also done research in evolutionary biology on topics ranging from nest parasitism to the molecular systematics of the blackbird family. Scott teaches introductory biology for majors at the University of Washington and is coauthor, with Jon Herron, of the standard-setting undergraduate text *Evolutionary Analysis*.

MIKE HARRINGTON completed his B.Sc. and Ph.D. in the Zoology Department of the University of British Columbia. His graduate work on *Drosophila* chromatin structure combined classical and molecular genetics. He is presently a Faculty Lecturer in the Biological Sciences Department at the University of Alberta. He teaches cell biology at the first- and second-year levels and genetics at the second-, third-, and fourth-year levels. His teaching goals are (1) to find ways to incorporate current scientific research into introductory courses, (2) to develop new ways to expand a course's boundaries with online material, and (3) to use clicker classroom response systems to teach content with questions.

JOAN SHARP received her B.A. and B.Sc. from McGill University and her M.Sc. from the University of British Columbia. She is a Senior Lecturer at Simon Fraser University, where she teaches Introduction to Biology, General Biology, Ecology, and Vertebrate and Invertebrate Biology. Her teaching and research interests include a number of areas: (1) Prior or newly acquired misconceptions interfere with student success in building meaningful biological understanding. It is important to understand common misconceptions and to develop activities that allow students to address and correct their misconceptions. Concept inventories can be used to measure students’ learning gains to assess the success of teaching strategies targeting student misconceptions. (2) Students’ written work can serve as a starting point to address areas of misunderstanding and to help students refine and express biological ideas. (3) Case studies engage students with key concepts by using meaningful real-world scenarios. The use of clickers allows the implementation of case studies in large lecture courses, facilitating small group discussion and increasing student learning.

KIM QUILLIN combines expertise in biology and information design to create lucid visual representations of biological principles. She received her B.A. in Biology at Oberlin College and her Ph.D. in Integrative Biology from the University of California, Berkeley (as a National Science Foundation Graduate Fellow), and taught undergraduate biology at both schools. Students and instructors alike have praised Kim’s illustration programs for *Biological Science*, as well as *Biology: A Guide to the Natural World* by David Krogh and *Biology: Science for Life* by Colleen Belk and Virginia Borden, for their success in the visual communication of biology. Kim is a Lecturer in the Department of Biological Sciences at Salisbury University.
This book is for instructors who want to help their students learn how to think like a biologist. Our students need to learn the language of biology and understand fundamental concepts, but they also need to apply these concepts to new situations, analyze experimental design, synthesize results, and evaluate hypotheses and data.

We wrote this book for instructors who embrace this challenge—who want to help their students learn how to think like a biologist. The essence of higher education is to promote higher-order thinking. Our job is to help students understand biological science at all six levels of Bloom’s taxonomy of learning.

Bloom’s Taxonomy. An annotated version of this graphic can be found in “Preface to Students: How to Use This Book” at the front of this book.

The Evolution of a Textbook
Evolution can be extremely fast in populations with short generation times and high mutation rates. Biology textbooks are no exception. Generation times have to be short because the pace of research in biology and student learning is so fast. This book, in particular, evolves quickly because it incorporates so many new ideas with each edition. Some of these “alleles” are novel mutations, but most arrive via lateral transfer—from advisors, reviewers, friends, students, and the literature.

What’s New in This Edition
This revision was about making the book a better teaching and learning tool. To help students manage the mass of information and ideas that is contemporary biology, we broke long paragraphs into shorter paragraphs, made liberal use of numbered lists and bulleted lists to “chunk” information and ideas, and broke out dozens of new sections and subsections.

In addition, we came up with a long list of new or expanded features.

- **Canadian Content** We have updated and expanded the Canadian content throughout the book. Each chapter now has at least one Canadian Research or Canadian Issues box. We have chosen examples that both illustrate one of the main concepts in the chapter and highlight the diversity of science being done in Canadian universities, colleges, and other organizations. These boxes now end with a “Think About It” question to allow students to test their understanding of the material.

- **The Big Picture** These new two-page spreads are meant to help students see the forest for the trees. They are concept maps that focus on particularly critical areas—Energy, Genetic Information, Evolution, Macromolecules, Ecology, and How Multicellular Organisms Work. Each synthesizes content and concepts from an array of chapters and includes exercises for students to complete. You’ll recognize these pages readily—their edges are coloured black (for example, see The Big Picture: Macromolecules on pages 110–111). In addition, the book’s MasteringBiology® website has 10 new concept map activities based on Big Picture content that will allow you to explore the concepts and their connections with your students during lectures.

- **BioSkills** Students completing introductory biology need to have acquired skills—the ability to read a graph, interpret an equation, understand the bands on a gel. The previous edition of *Biological Science* contained a series of appendices focused on key skills for introductory biology students. Instructors and students found them extraordinarily helpful. New in this edition are BioSkills on using the metric system, common Latin and Greek roots, techniques for isolating and visualizing cell components, cell and tissue culture methods, and model organisms. BioSkills are located in Appendix B.

- **Answer Key** New to the Second Canadian Edition are suggested answers to all questions and exercises in the textbook. Students asked us to make this important change between editions to make the book a more complete study tool. The answer key will allow them to self-check their understanding while reading and when reviewing for exams. Answers are in Appendix A.

- **Experiment Boxes** This text’s hallmark has always been its emphasis on experimental evidence—on teaching how we know what we know. In the previous edition, key experiments were converted to a boxed format so students could easily navigate through the logic of the question, hypothesis, and test. In this edition, we added a new question to every experiment box to encourage students to analyze some aspect of the experiment’s design.
Art Program Recent research shows that students are more likely to interpret phylogenetic trees correctly if the trees are designed with U-shaped branches instead of Y-shaped branches. We responded by redesigning every phylogenetic tree in the text. To make other subject areas more accessible to visual learners, we enlarged figures, replaced hundreds of photos with clearer images, and strove to streamline labels and graphics across the board. (More on improvements to the art program below.)

MasteringBiology Quizzes MasteringBiology gives students round-the-clock access to quizzes. We developed 550 new assignable questions based on the book’s “Blue Thread” questions (more on the “Blue Thread” and its evolution below). We also developed a cumulative practice test to simulate what a real exam might be like. To help students keep up with their reading, we created 55 new reading quizzes—one for each chapter—that you can assign through MasteringBiology.

MasteringBiology Experimental Inquiry Tutorials The call to teach students about the process of science has never been louder. In response, a team led by Tom Owens of Cornell University developed 10 new interactive tutorials on classic scientific experiments—ranging from Meselson–Stahl on DNA replication to the Grants’ work on Galápagos finches and Connell’s work on competition. Students who use these interactive tutorials should be better prepared to think critically about experimental design and evaluate the wider implications of the data—preparing them to do the work of real scientists in the future.

MasteringBiology BioFlix Animations and Tutorials BioFlix™ are movie-quality, 3-D animations available on MasteringBiology. They focus on the most difficult core topics and are accompanied by in-depth, online tutorials that provide hints and feedback to help guide student learning. Thirteen BioFlix were available with the previous edition of Biological Science. Five new BioFlix 3-D animations and tutorials have been developed for this edition—on mechanisms of evolution, homeostasis, gas exchange, population ecology, and the carbon cycle.

Changes to Blue Thread Scaffolding

The previous edition introduced a set of tools designed to help with a chronic problem for novice learners: picking out important information. Novices highlight every line in the text and try to memorize everything mentioned in lecture; experts instinctively hone in on the key unifying ideas. In the previous edition, we formalized the metacognitive tools in Biological Science as a “Blue Thread” set of questions; in this edition, we revised each question and put answers in the back of the book for easy student access.

1. In-text “You should be able to’s” offer exercises on topics that professors and students have identified as the most difficult concepts in each chapter.
2. Caption Questions and Exercises challenge students to examine critically the information in a figure or table—not just absorb it.
3. Think About It questions test or expand on an important concept in each Canadian Research and Canadian Issues box.
4. Check Your Understanding boxes present two to three tasks that students should be able to complete in order to demonstrate a mastery of summarized key ideas.
5. Chapter Summaries include “You should be able to” problems or exercises related to each of the key concepts declared in the gold thread.
6. End-of-Chapter Questions are organized around Bloom’s taxonomy of learning, so students can test their understanding at the knowledge, comprehension, and application levels.

The fundamental idea is that if students really understand a piece of information or a concept, they should be able to do something with it. How do you get to Carnegie Hall? Practise.

As students mature as biologists-in-training and start taking upper-division courses, most or all of this scaffolding can disappear. By the time our students are in their fourth year, they should have enough expertise to construct a high-level understanding on their own. But if a well-designed scaffold isn’t there to get them started in their first and second years when they are novices, most will flounder. We have to help them learn how to become good students.

Supporting Visual Learners

Figures can help students, especially visual learners, at all levels of Bloom’s Taxonomy—not only to understand and remember the material, but also to exercise higher levels of critical thinking. The overall goal of the Second Canadian Edition art revision was to hone the figures for accessibility to help novice learners recognize and engage with important visual information. In addition
to redesigning the previously mentioned phylogenetic trees, Kim Quillin led the effort to enhance virtually every other aspect of the visual-teaching program.

- **Art and Photos** Kim enlarged art and photographs in figures throughout the book to increase clarity by making details physically easier to see. She also reduced the amount of detail in labels and graphics to simplify, simplify, simplify.

- **Colour Use** Kim continues to use colour strategically to draw attention to important parts of the figures. In this revision, she boosted colour contrast in many figures to make the art more vibrant and the details easier to see.

- **Molecular Icons** Kim redesigned many molecular icons to simplify their shapes. The overall contours are based on molecular coordinates, when available, to accurately represent size and geometry, but she smoothed the textures for a simpler appearance—one that is more memorable and pleasing.

- **Molecular Models** New molecular models have been introduced to help students visualize structure–function relationships. In Chapter 5, for example, redesigned 2-D line drawings of sugars are now paired with 3-D ball-and-stick models.

- **“Pointers”** The Second Canadian Edition figures still use pointer annotations as a “whisper in the ear” to guide students in interpreting figures, but Kim has replaced the hand with an arrow to be more precise.

Acknowledgments

Reviewers

The peer review system is the key to quality and clarity in science publishing. In addition to providing a filter, the investment that respected individuals make in vetting the material—catching errors or inconsistencies and making suggestions to improve the presentation—gives authors, editors, and readers confidence that what they are publishing and reading meets rigorous professional standards.

Peer review plays the same role in textbook publishing. The time and care that this book’s reviewers have invested is a tribute to their professional integrity, their scholarship, and their concern for the quality of teaching. This edition has been revised and improved based on insights from the following individuals:

- Eric Alcorn, Acadia University
- Greg Beaulieu, University of Victoria
- Todd Bishop, Dalhousie University
- Peter Boag, Queen’s University
- Dora Cavallo-Medved, University of Windsor
- Brett Couch, University of British Columbia
- Christine Dalton, University of the Fraser Valley
- Nancy Flood, Thompson Rivers University
- Chris Garside, formerly of the University of Ontario Institute of Technology, now at University of Toronto, St. George
- Kim Gilbride, Ryerson University
- Sharon Gillies, University of the Fraser Valley
- Anna Hicks, Memorial University
- Robert Holmberg, Athabasca University
- Andrea Kirkwood, University of Ontario Institute of Technology
- David LesBarreres, Laurentian University
- Ivona Mladenovic, Simon Fraser University
- Barbara Moon, University of the Fraser Valley
- Blythe Nilson, University of British Columbia, Okanagan
- Tanya Noel, York University
- Robin Owen, Mount Royal University
- Carol Pollock, University of British Columbia
- Melanie Rathburn, Mount Royal University
- Fiona Rawle, University of Toronto, Mississauga
- Carla Starchuk, University of Alberta
- Alexandra Venter, Athabasca University
- Usha Vivegananthan, Mohawk College
- Debbie Wheeler, University of the Fraser Valley
- Ken Wilson, University of Saskatchewan

Supplements Contributors

Instructors depend on an impressive array of support materials—in print and online—to design and deliver their courses. The student experience would be much weaker without the study guide, test bank, activities, animations, quizzes, and tutorials written by the following individuals:

- **Study on the Go**—Nancy Flood, Thompson Rivers University
- **PowerPoint and PRS Questions**—Sharon Gillies, University of the Fraser Valley
- **Testbank**—Tamara Kelly and Nicole Nivillac, York University

Book Team

As coauthors on the Second Canadian edition of *Biological Science*, we would like to thank all the talented people who were involved in the production of our textbook. This very professional team was headed by Gary Bennett, Vice President and Editorial Director. We are grateful for the guidance of both Michelle Sartor and Lisa Rahn, who replaced Michelle as Senior Acquisitions Editor.

Ken Ko of Queen’s University shared the writing duties with us on the topics of Canadian research on plant systems and on gene regulation. We are impressed by the polished art produced by Julia Hall from our hand-drawn scribbles.

Developmental Editor Joanne Sutherland patiently and expertly provided guidance and encouragement throughout the process, while the final version of the text was guided by Project Manager Carrie Fox and Copyeditor Audra Gorgiev, directed by Lead Project Manager Avinash Chandra, and effectively and efficiently managed by in-house Project Manager Rachel Thompson.

It is always a genuine pleasure to work with Senior Marketing Manager Kim Ukraintsev and Marketing Coordinator Kathie Kirchsteiger. These dedicated individuals supervise Pearson Canada’s talented sales reps, who listen to professors, advise the editorial staff, and get the book into student hands.

Finally, we would like to offer our heartfelt thanks for the detailed suggestions from the reviewers who cast a careful eye over each draft chapter. Their thoughtful comments are very much appreciated.
Serving a Community of Teachers

There is nothing that inspires us more than getting together with other biology instructors and “talking shop.” These meetings may be during teaching workshops or less formal get-togethers. While we all have our own personal teaching styles, these styles are a collection of ideas tested and refined with our colleagues—or borrowed outright!

Research on biology education is gathering momentum, trying to catch up on the trail blazed by physics education researchers, bringing the same level of rigour to our classrooms that we bring to our lab benches and field sites. We try to bring the spirit and practice of evidence-based teaching into this textbook, and welcome your comments, suggestions, and questions.

Thank you for considering this text, and for your work on behalf of your students. We have the best jobs in the world.

SCOTT FREEMAN
University of Washington

MIKE HARRINGTON
University of Alberta
mjh@ualberta.ca

JOAN SHARP
Simon Fraser University
jsharp@sfu.ca
As discussed in the preface, a major focus of this revision is to enhance the pedagogical utility of Biological Science. New Canadian content has been added to many of the chapters. Another major goal is to ensure that the content reflects the current state of science and is accurate. In addition, every chapter has been rigorously evaluated for discussions that, in the previous edition, may have been too complex or overly detailed. As a result of this scrutiny, certain sections in every chapter have been simplified, content has been pruned judiciously, and the approach to certain topics has been re-envisioned to enhance student comprehension. In this section, some of the key content improvements to the textbook are highlighted.

Unit 1 The Molecules of Life

Chapter 1 A new experiment on ant navigation and discussions of tree-based naming systems and artificial selection in maize has been added. Coverage is expanded on the definition of life.

Chapter 2 The descriptions of bond angles and the geometry of simple molecules are simplified. Added is a discussion on the hot-start hypothesis as well as a new Key Concept on the nature of chemical energy.

Chapter 3 This chapter has been streamlined by eliminating discussion of optical isomers/chirality and reducing coverage of enzyme kinetics and reaction rates. New Canadian content includes the impact of prions on the cattle industry and new “designer proteins” being developed at the University of Guelph.

Chapter 4 The discussion of RNA is expanded to include recently discovered roles for RNAs in cells. There are more detailed explanations on how nucleotides are named and how DNA molecules are measured. “Designer nucleotides” made at McMaster University are the subject of a new Canadian Research box. Also added is a new summary table (Table 4.1) comparing DNA and RNA structure.

Chapter 5 A stronger emphasis on the link between electronegativity of atoms and potential energy in, C—C, C—H, C—O and bonds is developed. New ball-and-stick models are added to clarify the differences in location and orientation of functional groups.

Chapter 6 Coverage of secondary active transport has been expanded. Also included in this chapter is current research on the “first cell” and a discussion of nonrandom distribution of membrane proteins and phospholipids.

Unit 2 Cell Structure and Function

Chapter 7 Recent discoveries on bacterial cell structure is described in a new Canadian Research box. The relationships between chloroplasts and other plastids and between the lysosomes and other endomembrane system components have been emphasized. Centrifugation is moved to BioSkills 11 in Appendix B.

Chapter 8 New sections on quorum sensing in bacteria and cross-talk among signal-transduction pathways have been added. Canadian research on both of these topics has also been included.

Chapter 9 The discussions of mitochondrial structure, ATP yield from glucose oxidation, and the role of GDP in the citric acid cycle have been updated. The introductory section on cellular respiration has been simplified. The ATP synthase enzyme is the subject of a new Canadian Research box.

Chapter 10 A new section on regulation (inhibition) has been added. The sections on C₄ and CAM photosynthesis now emphasize the role of these pathways in increasing CO₂ concentrations versus water conservation. The Canadian research described in this chapter has been updated to describe a project to improve photosynthesis in rice that is currently under way at the University of Toronto.

Chapter 11 The beginning of the chapter has been completely revised to include why and how each step of mitosis occurs. Mitosis is now presented in three ways: (1) the events that define each stage, (2) the reason why the cell does what it does, and (3) how the chromosome behaviour is the result of microtubule, cohesin, condensin, and nuclear lamin proteins working in progression. The discussion on the role of activated MPF has been updated to include the triggering M phase of the cell cycle. Animal cell culture methods are moved to BioSkills 12 in Appendix B.

Unit 3 Gene Structure and Expression

Chapter 12 The topic of crossovers has been expanded and is the subject of a new Canadian Research box. The discussions of recombination rates and aneuploidy rates in humans are updated. New micrographs have been added to the phases of meiosis figure (Figure 12.7).

Chapter 13 The linkage discussion and notation in fly crosses have been simplified. Sex-linkage is moved to the Mendelian section (Section 13.4 The Chromosome Theory of Inheritance), and mapping is now covered in Box 13.1 Quantitative Methods:
Chapter 14 A new space-filling model of DNA has been added to Figure 14.4. The *E. coli* DNA polymerases I and III are now described independently. Canadian research on the relationship between telomerase, telomeres, and cancer has been included.

Chapter 15 Discussions on mutation in the melanocortin receptor (link to mouse-coat colour camouflage) and karyotypes of cancerous cells have been added. A new Canadian Research box on fur colour in mink provides an opportunity for students to practise using the genetic codon table.

Chapter 16 The sections on transcription in bacteria and eukaryotes are now combined. The structure of the translation initiation complex in bacteria has been updated to reflect current science; snRNAs have been added to the discussion of RNA splicing. The subject of gene expression in organelles is described within a new Canadian Research box.

Chapter 17 The chapter was streamlined with the removal of discussions of DNA fingerprinting and the structure of the operator and DNA-binding proteins. Treatment of catabolite repression/positive control has been trimmed. A practical application of bacterial gene expression done at the Université Laval has been added.

Chapter 18 Included in this chapter is a new summary table (Table 18.1) comparing control of gene expression in bacteria and eukaryotes. The chapter now describes the types of histone proteins in eukaryotes and new Canadian research on the relationship between these proteins and cancer. Also added are discussions on ubiquitination and protein degradation, the importance of epigenetic inheritance (chromosome structure), and the histone code hypothesis.

Chapter 19 Figure 19.11 has been updated to show Sanger sequencing done with fluorescently labelled nucleotides. Southern/Northern/Western blots have moved to *BioSkills 9* in Appendix B. The discussions on golden rice, the impact of GM crops, and SNP association studies for human diseases have been updated with the most recent research. Notes on "next-generation" sequencing technologies have been included.

Chapter 20 Human health applications now emphasize the use of genomics and microarrays to study cancer. Several datasets are updated, including sequencing database totals. New notes on miRNA genes, metagenomics, and the definition of the gene have been added.

Unit 4 Developmental Biology

Chapter 21 The discussions of *bicoid* and regulatory gene cascades are simplified. New material on auxin as a master regulator in early development and the importance of apoptosis have been added.

Chapter 22 The discussion about sea urchin fertilization and variation has been streamlined.

Chapter 23 A new section introducing basic concepts in angiosperm gametogenesis has been added.

Unit 5 Evolutionary Processes and Patterns

Chapter 24 A section on the internal consistency of diverse data as evidence for evolution, including a new phylogeny and time line of whale evolution, has been added. Figure 24.6, depicting the evolution of the Galápagos mockingbird, and long-term data on ground finches (Figure 24.18) are updated to reflect the most current science. There is a new graph on the evolution of drug resistance in pathogenic bacteria (Figure 24.14).

Chapter 25 The genetic drift example has changed from breeding in a small population on Pitcairn Island to coin flips simulating mating in a single couple (using data from the author’s classroom). The prairie lupine gene flow example is replaced by recent work on an island population of the great tit, *Parus major*. Notes on balancing selection, assortative mating, and interactions among evolutionary forces have been included.

Chapter 26 The ecological species concept has been added to the species definitions included in the chapter. The speciation-by-vicariance example has been changed from rats to snipping shrimp, and the sympatric speciation example featuring soapberry bugs has been changed to apple/hawthorn flies.

Chapter 27 The sections on adaptive radiation and mass extinction have been completely reorganized. A new hypothesis for the cause of the Cambrian explosion is included, and detail on the “new genes, new bodies” hypothesis has been removed. Presentation of “Life’s Time Line” has been significantly overhauled (see Figures 27.8, 27.9, and 27.10). The Burgess Shale fossil site is now introduced in this chapter.

Unit 6 The Diversification of Life

The model organisms have been moved to *BioSkills 14* in Appendix B. Phylogenetic trees have been redrawn to reflect a horizontal orientation with U-shaped branches for easier comprehension.

Chapter 28 New information on mechanisms of pathogenicity is added. Extensive updates include new notes on archaeon-eukaryote polymerases, the discovery of extensive biomass in the marine subfloor, an archaeon associated with a human disease, discovery of N-fixation and nitrification in archaea, and bacteriorhodopsin’s role in phototrophy.

Chapter 29 A stronger emphasis on endosymbiosis as a theme in protist diversification has been threaded throughout this chapter.

Chapter 30 New content on green algae as a grade and on convergence in vascular tissue in mosses/vascular plants and gnetophytes/angiosperms has been added.

Chapter 31 The dynamic nature of mycelia, the importance of glomalin in soil, the role of mating types, and the discovery
of “multigenomic” asexual glomales all have new supporting material.

Chapter 32 The treatment of embryonic tissues, developmental patterns, the coelom, and body symmetry has been updated to reflect the latest scientific thinking. A shift in emphasis to the origin of the neuron and cephalization has been implemented. New Canadian Research box describes an early Cambrian site in Jasper National Park, Alberta, that has yielded microfossils identified as the oldest molluscan radulae.

Chapter 33 New commentary on the independent transitions to land as well as a clarified discussion on the nature of the ecdysozoan–lophotrochozoan split are included. The discussion of annelids is updated to reflect recent results. A new Canadian Issues box describes the First Census of Marine Life and the Canadian Healthy Oceans Network (CHONe), which worked with the census to establish a biodiversity database for Canada’s Pacific, Arctic, and Atlantic oceans.

Chapter 34 The coverage of the echinoderm endoskeleton has been expanded and a phylogeny of early tetrapods has been added to the fin-to-limb transition figure (Figure 34.16). New data have been incorporated in the evolution-of-fishes time line (Figure 34.11). The treatment of the taxonomic status of hagfishes and lampreys, evolution of the jaw (Figure 34.14), and H. sapiens migration (Figure 34.48) also include the most recent data available. The emphasis on the adaptive significance of the amniotic egg has changed from watertightness to increased size and support. Emphasis in the discussion of viviparity has changed to the adaptive advantage of embryo portability and temperature control. The recent analysis of Ardipithecus ramidus as the first hominin, with data on estimated body mass and braincase volume, has been included.

Chapter 35 The material on HIV phylogeny has been moved to the section on emerging viruses.

Unit 7 How Plants Work

Chapter 36 Surface-area-to-volume ratios have been added as a theme in root and shoot systems. New information on contractile roots in Ficus and bulbs is incorporated into this chapter.

Chapter 37 New content on aquaporins and the transmembrane route to root xylem has been added, and coverage of why air has such low water pressure potential has been expanded. New Canadian research is included that considers the adaptive value of plastic responses of bluebunch wheatgrass under the increasingly dry conditions that climate change is bringing to many regions in the Canadian interior.

Chapter 38 The description of nitrogen fixation has been clarified.

Chapter 39 A new Canadian Research box explores how plant signalling networks influence growth in plants. Figure 39.8 on the acid-growth hypothesis has been redesigned, and the discussion of polar auxin transport is simplified. New commentary on the role of brassinosteroids in growth regulation and on “talking trees” is included. The coverage of the receptors for GA, auxin, ABA, and brassinosteroids and MeSA’s role in the SAR has been updated with the most current research. Plant tissue culture methods have been moved to BioSkills 12 in Appendix B.

Chapter 40 Comments on day-length sensing and on pollination syndromes are new to this chapter.

Unit 8 How Animals Work

Chapter 41 New details on tissue types (especially connective tissue) have been incorporated. The discussion of thermoregulation has been completely reorganized for a more logical flow. The research of Carleton University’s Ken Storey, who explores how some animals survive cold Canadian winters, is now included.

Chapter 42 The sections on the shark rectal gland and the mammalian loop of Henle have been revised to improve focus.

Chapter 43 A description of incomplete digestive systems is now included, and coverage of comparative aspects of digestive tract structure and function has been expanded.

Chapter 44 Information on the types of circulatory systems and types of blood vessels has been consolidated. Details on surface tension and lung elasticity have been removed, while new content on countercurrent exchange in fish gills has been added.

Chapter 45 The chapter and section introductions have been rewritten to introduce a comparative context and to make the neuron-to-systems chapter organization more transparent. New content on interspecific variation in nervous systems has been added.

Chapter 46 The chapter has been shortened and its focus sharpened by the removal of nonessential information. A new Canadian Research box explores why large numbers of migratory bats are killed by turbines at wind farms in southern Alberta.

Chapter 47 New material on EPO abuse in athletes has been included.

Chapter 48 A new Canadian Issues box describes Canada’s Assisted Human Reproduction Act. The section on sperm competition includes new data from experiments on seed beetles.

Chapter 49 The discussion of the V regions of BCRs and antibodies and recombination in BCR/TCR genes has been simplified. New content on autoimmune disorders and diseases associated with immunosuppression, allergies, and immunodeficiency diseases has been added. The discussion of vaccination has been expanded.

Unit 9 Ecology

Chapter 50 A new Canadian Research box explores whether sockeye salmon stocks vary in their ability to cope with
increasing temperatures during migration. New information on the importance of nutrient availability in aquatic ecosystems, with details on lake turnover and ocean upwelling, is included. A new section on the Wallace line has also been added.

Chapter 51 The content in this chapter has been completely reorganized to increase cohesiveness. It is presented as a series of questions in behavioural ecology, with each question addressed at the proximate and ultimate levels with separate case studies. Material on modes of learning, innate behaviour, bat–moth interactions, sex change in wrasses, and acoustic and visual signaling in red-winged blackbirds has been trimmed. New content on animal eusociality and on child abuse in humans has been added.

Chapter 52 Discussion of the hare–lynx cycle field experiment has been reorganized for clarity, with new supporting “Results” data added to accompanying Figure 52.13.

Chapter 53 New content has been added on species richness and resistance of communities to invasion, the use of predators or parasites as biocontrol agents, and character displacement in finches. The discussion of succession in Glacier Bay is reorganized and simplified. The discussion of alternative hypotheses to explain the latitudinal gradient in species richness has been expanded and clarified. Simon Fraser University paleontologist Bruce Archibald and his colleagues have found a novel way to investigate the role of climatic factors in producing latitudinal gradient in species richness, as explained in the new Canadian Research box.

Chapter 54 The chapter was rewritten and reorganized to sharpen its focus on human impacts. Sections on trophic cascades and biomagnification have been added, as have recent data on human appropriation of NPP, sources of nutrient gain and loss, and the impact of ocean acidification on coral growth.

Chapter 55 New content on the impact of global climate change and a new section on ways to preserve biodiversity are now included. Two new boxes on quantitative methods have been added: one on estimating species numbers and species losses and the other on population viability analysis. Discussion of Canada’s Species at Risk Act (SARA) has been moved to this chapter and is discussed in Canadian Issues 55.1. Revised Canadian Issues 55.2 considers the fate of polar bears in a warming Arctic.

Supplements

Instructor Resources

All instructor resources are available on a flash drive (978-0-321-72911-8) and can also be downloaded from the instructor resources area of MasteringBiology.

- The entire textbook illustration program is available in JPEG format with and without labels. Illustrations have been individually enhanced for optimal in-class projection.
- The entire illustration program is also available with editable labels and leaders in chapter-by-chapter Microsoft PowerPoint® presentations.
- A second set of PowerPoint presentations offers lecture outlines for each chapter, augmented by key text illustrations and hyperlinks to animations.
- A third set of PowerPoint presentations is layered to allow select key figures to be presented in a step-by-step manner.
- In-class active lecture questions correlated by chapter can be used with any classroom response system and are available in PowerPoint format.
- Canadian case studies picking up ideas raised in the Canadian Research and Issues boxes are available to explore these studies further and investigate how to apply them in the world. Teaching notes include an Introduction, Learning Objectives, Student Misconceptions, Classroom Management, Supplementary Questions, and References.
- The Instructor Guide includes lecture outlines, active-learning lecture activities, answers to end-of-chapter questions, and innovative material to help motivate and engage students.
- Test Bank and Computerized Test Bank questions are ranked according to Bloom’s Taxonomy. Improved TestGen® software makes assembling tests much easier. The Test Bank is also available in Microsoft Word® format.

Student Resources

- The eText addresses the changing needs of students and instructors. Found within MasteringBiology, this electronic version of the text links directly to animations, quizzes, and videos.
• The Study Guide (978-0-321-82868-2) presents a breakdown of key biological concepts, and helps students focus on the fundamentals of each chapter. It is designed in two parts to help students study more effectively. Part I is intended as a “survival guide,” and Part II explores the material in the textbook, chapter by chapter.

MasteringBiology

Students who purchase a new copy of the text receive free access to MasteringBiology® (www.masteringbiology.com), which contains valuable videos, animations, and practice quizzes to help students learn and prepare for exams.

THE BIG PICTURE New to the Second Canadian Edition, The Big Pictures are interactive concept maps based on seven overarching topics in biology that help students synthesize information across broad concepts and not get lost in the details.

Macromolecules (Chapters 2–6)
- How monomers are used to make macromolecules
- How macromolecules can be classified

Energy (Chapters 9 and 10)
- How photosynthesis yields sugar
- How cellular respiration yields ATP
- How photosynthesis relates to cellular respiration

Genetic Information (Chapters 12–18)
- How genes are expressed
- How genetic information is copied and transmitted
- How genetic information changes

Evolution (Chapters 24–27)
- How species evolve
- How species form the tree of life

How Vascular Plants Work (Chapters 36–39)
- How vascular plants capture light energy and take up CO₂
- How vascular plants obtain water and inorganic nutrients
- How vascular plants respond to hostile organisms

How Humans Work (Chapters 41–47, 49)
- How humans obtain nutrients and maintain homeostasis
- How humans recognize and respond to hostile organisms

Ecology (Chapters 50–55)
- How organisms interact in their environment
- How energy flows and nutrients cycle through ecosystems

BIOFLIX™ BioFlix are 3-D movie-quality animations with carefully constructed student tutorials, labelled slide shows, study sheets, and quizzes, that bring biology to life.

WEB ACTIVITIES Web Activities help students learn biological concepts via simple, cartoon-style animations and contain pre-quizzes and post-quizzes to test student’s understanding of biology’s dynamic processes and concepts.

DISCOVERY VIDEOS Brief videos from the Discovery™ Channel on 29 different biology topics are available for student viewing along with a corresponding video quiz.

VIDEOS Additional molecular and microscopy videos provide vivid images of processes of the cell.

BIOSKILLS BioSkills (in Appendix B) provide background on key skills and techniques for introductory biology students. New to the Second Canadian Edition are online questions that give students practice building their skill set.

GRAPHIT! Graphing tutorials show students how to plot, interpret, and critically evaluate real data.

NEW TO THE BIG PICTURE

<table>
<thead>
<tr>
<th>Chapter 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>● An Introduction to Graphing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Animal Food Production Efficiency and Food Policy</td>
</tr>
<tr>
<td>● Atmospheric CO₂ and Temperature Changes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Age Pyramids and Population Growth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Species Area Effect and Island Biogeography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Forestation Change</td>
</tr>
<tr>
<td>● Global Fisheries and Overfishing</td>
</tr>
<tr>
<td>● Municipal Solid Waste Trends in the United States</td>
</tr>
<tr>
<td>● Global Freshwater Resources</td>
</tr>
<tr>
<td>● Prospects for Renewable Energy</td>
</tr>
<tr>
<td>● Global Soil Degradation</td>
</tr>
</tbody>
</table>

WORD STUDY TOOLS New to the Second Canadian Edition are Latin and Greek root word flash cards to help students practise the language of biology. In addition, an audio glossary provides correct pronunciation to help students learn key terms introduced in the book.

CUMULATIVE TEST Every chapter offers 20 Practice Test questions that students can pool from different chapters into a Cumulative Test to simulate a practice exam.

eTEXT The eText of *Biological Science*, Second Canadian Edition, is available online 24/7 for students’ convenience. New annotation, highlighting, and bookmarking tools allow students to personalize the material for efficient review.
STUDY ON THE GO At the end of every chapter, students will find a QR code (a.k.a. quick response code) that links to Study on the Go mobile content. Students can access text-specific resources, including quizzes and flashcards, through their smartphones, allowing them to study whenever and wherever they wish!

Students can go to one of the sites below to see how to download a free app to their smartphone that facilitates access to these resources. Once the app is installed, the phone will scan the code and link to a website containing Biological Science's Study on the Go content.

ScanLife
http://getscanlife.com

NeoReader
http://get.neoreader.com

QuickMark
http://www.quickmark.com.tw

MASTERING BIOLOGY MEDIA AT A GLANCE

<table>
<thead>
<tr>
<th></th>
<th>BIOFLIX</th>
<th>WEB ACTIVITIES</th>
<th>VIDEOS</th>
<th>BIOSKILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Biology and the Tree of Life</td>
<td>Artificial Selection; Introduction to Experimental Design</td>
<td>An Idealized Alpha Helix (A); An Idealized Alpha Helix (B); An Idealized Beta-Pleated Sheet (A); An Idealized Beta-Pleated Sheet (B)</td>
<td>The Metric System; Reading Graphs; Reading a Phylogenetic Tree; Some Common Latin and Greek Roots Used in Biology</td>
<td></td>
</tr>
<tr>
<td>Unit 1 The Molecules of Life</td>
<td>The Properties of Water</td>
<td>Structure of RNA and DNA; Stick Model of DNA; Surface Model of DNA</td>
<td>Reading Chemical Structures; Using Logarithms; Making Concept Maps; Reading Graphs</td>
<td></td>
</tr>
<tr>
<td>2 Water and Carbon: The Chemical Basis of Life</td>
<td>Condensation and Hydrolysis Reactions; Activation Energy and Enzymes</td>
<td>An Idealized Alpha Helix (A); An Idealized Alpha Helix (B); An Idealized Beta-Pleated Sheet (A); An Idealized Beta-Pleated Sheet (B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Protein Structure and Function</td>
<td>Condensation and Hydrolysis Reactions; Activation Energy and Enzymes</td>
<td>Space-Filling Model of Cholesterol; Stick Model of Cholesterol; Space-Filling Model of Phosphatidylcholine; Stick Model of a Phosphatidylcholine</td>
<td>Biological Imaging: Microscopy and X-Ray Crystallography; Separating and Visualizing Molecules</td>
<td></td>
</tr>
<tr>
<td>4 Nucleic Acids and the RNA World</td>
<td>Membrane Transport</td>
<td>Space-Filling Model of DNA; Surface Model of DNA</td>
<td>Biological Imaging: Microscopy and X-Ray Crystallography; Separating and Visualizing Molecules</td>
<td></td>
</tr>
<tr>
<td>5 An Introduction to Carbohydrates</td>
<td>Membrane Transport</td>
<td>Diffusion and Osmosis; Membrane Transport Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Lipids, Membranes, and the First Cells</td>
<td>Membrane Transport</td>
<td>Diffusion and Osmosis; Membrane Transport Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 Cell Structure and Function</td>
<td>Membrane Transport</td>
<td>Diffusion and Osmosis; Membrane Transport Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Inside the Cell</td>
<td>Tour of an Animal Cell; Tour of a Plant Cell</td>
<td>Transport into the Nucleus; A Pulse-Chase Experiment</td>
<td>Confocal vs. Standard Fluorescence Microscopy; Cytoplasmic Streaming; Crawling Amoeba</td>
<td></td>
</tr>
<tr>
<td>8 Cell–Cell Interactions</td>
<td>Cellular Respiration</td>
<td>Redox Reactions; Glucose Metabolism</td>
<td>Space-Filling Model of ATP (adenosine triphosphate); Stick Model of ATP (adenosine triphosphate)</td>
<td></td>
</tr>
<tr>
<td>9 Cellular Respiration and Fermentation</td>
<td>Cellular Respiration</td>
<td>Redox Reactions; Glucose Metabolism</td>
<td>Space-Filling Model of ATP (adenosine triphosphate); Stick Model of ATP (adenosine triphosphate)</td>
<td></td>
</tr>
</tbody>
</table>
MASTERING BIOLOGY MEDIA AT A GLANCE (continued)

<table>
<thead>
<tr>
<th>Unit 10</th>
<th>Photosynthesis</th>
<th>Photosynthesis</th>
<th>Chemiosmosis; Photosynthesis; Strategies for Carbon Fixation</th>
<th>Space-Filling Model of Chlorophyll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 11</td>
<td>The Cell Cycle</td>
<td>Mitosis</td>
<td>The Phases of Mitosis; Four Phases of the Cell Cycle</td>
<td>Mitosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Separating and Visualizing Molecules; Cell and Tissue Culture Methods</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 3 Gene Structure and Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Meiosis</td>
</tr>
<tr>
<td>13 Mendel and the Gene</td>
</tr>
<tr>
<td>14 DNA and the Gene: Synthesis and Repair</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 15 How Genes Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Transcription, RNA Processing, and Translation</td>
</tr>
<tr>
<td>17 Control of Gene Expression in Bacteria</td>
</tr>
<tr>
<td>18 Control of Gene Expression in Eukaryotes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 19 Analyzing and Engineering Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Analyzing and Engineering Genes</td>
</tr>
<tr>
<td>20 Genomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 4 Developmental Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Principles of Development</td>
</tr>
<tr>
<td>22 An Introduction to Animal Development</td>
</tr>
<tr>
<td>23 An Introduction to Plant Development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 5 Evolutionary Processes and Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Evolution by Natural Selection</td>
</tr>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>25 Evolutionary Processes</td>
</tr>
<tr>
<td>26 Speciation</td>
</tr>
<tr>
<td>27 Phylogenies and the History of Life</td>
</tr>
<tr>
<td>Unit 6 The Diversification of Life</td>
</tr>
<tr>
<td>28 Bacteria and Archaea</td>
</tr>
<tr>
<td>29 Protists</td>
</tr>
<tr>
<td>30 Green Algae and Land Plants</td>
</tr>
<tr>
<td>31 Fungi</td>
</tr>
<tr>
<td>32 An Introduction to Animals</td>
</tr>
<tr>
<td>33 Protostome Animals</td>
</tr>
<tr>
<td>34 Deuterostome Animals</td>
</tr>
<tr>
<td>35 Viruses</td>
</tr>
<tr>
<td>Unit 7 How Plants Work</td>
</tr>
<tr>
<td>36 Plant Form and Function</td>
</tr>
<tr>
<td>37 Water and Sugar Transport in Plants</td>
</tr>
<tr>
<td>38 Plant Nutrition</td>
</tr>
<tr>
<td>39 Plant Sensory Systems, Signals, and Responses</td>
</tr>
<tr>
<td>40 Plant Reproduction</td>
</tr>
<tr>
<td>Unit 8 How Animals Work</td>
</tr>
<tr>
<td>41 Animal Form and Function</td>
</tr>
<tr>
<td>42 Water and Electrolyte Balance in Animals</td>
</tr>
</tbody>
</table>
Mastering Biology Media at a Glance (continued)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
<th>BIOFLIX</th>
<th>WEB ACTIVITIES</th>
<th>VIDEOS</th>
<th>BIOSKILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 Animal Nutrition</td>
<td>Homeostasis: Regulating Blood Sugar</td>
<td>The Digestion and Absorption of Food; Understanding Diabetes Mellitus</td>
<td></td>
<td></td>
<td>Biological Imaging; Microscopy and X-Ray Crystallography; Separating and Visualizing Molecules</td>
</tr>
<tr>
<td>44 Gas Exchange and Circulation</td>
<td>Gas Exchange</td>
<td>Gas Exchange in the Lungs and Tissues; The Human Heart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Electrical Signals in Animals</td>
<td>How Neurons Work; How Synapses Work</td>
<td>Membrane Potentials; Action Potentials</td>
<td>The Acetylcholine Receptor</td>
<td></td>
<td>Using Logarithms</td>
</tr>
<tr>
<td>46 Animal Sensory Systems and Movement</td>
<td>Muscle Contraction</td>
<td>The Vertebrate Eye: Structure and Contraction of Muscle Fibres</td>
<td>The Acetylcholine Receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 Chemical Signals in Animals</td>
<td>Endocrine System Anatomy; Hormone Actions on Target Cells</td>
<td>Cartoon Model of the DNA Binding Motif of a Zinc Finger Transcription Factor Binding to DNA</td>
<td></td>
<td></td>
<td>Separating Cell Components by Centrifugation</td>
</tr>
<tr>
<td>48 Animal Reproduction</td>
<td>Human Gametogenesis; Human Reproduction</td>
<td></td>
<td></td>
<td></td>
<td>Using Logarithms; Reading a Phylogenetic Tree</td>
</tr>
<tr>
<td>49 The Immune System in Animals</td>
<td>The Inflammatory Response; The Adaptive Immune Response</td>
<td></td>
<td>Chemotaxis of a Neutrophil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit 9 Ecology

<table>
<thead>
<tr>
<th>Topic</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 An Introduction to Ecology</td>
<td>Tropical Atmospheric Circulation</td>
</tr>
<tr>
<td>51 Behavioural Ecology</td>
<td>Homing Behaviour in Digger Wasps</td>
</tr>
<tr>
<td>53 Community Ecology</td>
<td>Life Cycle of a Malaria Parasite; Succession</td>
</tr>
<tr>
<td>54 Ecosystems</td>
<td>The Carbon Cycle</td>
</tr>
<tr>
<td>55 Biodiversity and Conservation Biology</td>
<td>Habitat Fragmentation</td>
</tr>
</tbody>
</table>
Preface to Students: How to Use This Book

Focus on the Gold Thread

These red-tailed hawk chicks are being fed by a parent. In three years they will have grown and had chicks of their own. Likewise the pine tree they are nesting in is also reproducing using seeds within its pine cones. The birds, the tree, and the organisms present but too small to see in this photograph all need to produce offspring. Despite the great diversity of life, all living creatures share this and other common properties.

In essence, biological science is a search for ideas and observations that unify our understanding of the diversity of life, from bacteria living in rocks under ground to hedgehogs and humans. Chapter 1 is an introduction to this search. The goals of this chapter are to introduce the nature of life and explore how biologists go about studying it. The chapter also introduces themes that will resonate throughout this book: (1) analyzing how organisms work at the molecular level, (2) understanding organisms in terms of their evolutionary history, and (3) helping you learn to think like a biologist.

Let’s begin with what may be the most fundamental question of all: What is life?

1.1 What Does It Mean to Say That Something Is Alive?

An organism is a life form—a living entity made up of one or more cells. Although there is no simple definition of life that is endorsed by all biologists, most agree that organisms share a suite of five fundamental characteristics:

- **Energy.** To stay alive and reproduce, organisms have to acquire and use energy. To give just two examples: plants absorb sunlight; animals ingest food.

- **Cells.** Organisms are made up of membrane-bound units called cells. A cell’s membrane regulates the passage of materials between exterior and interior spaces.

- **Information.** Organisms process hereditary or genetic information, encoded in units called genes, along with information they acquire from the environment. Right now, cells throughout your body are using genetic information to make the molecules that keep you alive; your eyes and brain are decoding information on this page that will help you learn some biology.

Key Concepts

- Organisms obtain and use energy; are made up of cells, process information, replicate, and, as populations, evolve.
- The cell theory proposes that all organisms are made of cells and that all cells come from pre-existing cells.
- The theory of evolution by natural selection maintains that species change through time because individuals with certain heritable traits produce more offspring than other individuals do.
- A phylogenetic tree is a graphical representation of the evolutionary relationships between species. These relationships can be estimated by analyzing similarities and differences in traits. Species that share distinctive traits are closely related and are placed close to each other on the tree of life.
- Biologists ask questions, generate hypotheses to answer them, and design experiments or make observations that test the predictions made by competing hypotheses.

MORE! Bulleted Lists

Take note of bulleted lists that “chunk” information and ideas. This will help you manage the information that you are learning in the course.

Gold Highlighting

Watch for important information highlighted in gold. Gold highlighting is always a signal to slow down and pay special attention.

Gold Key

Material related to Key Concepts will be signalled with a gold key.
Natural selection occurs when heritable variation in certain traits leads to improved success in reproduction. Evolution is a change in the characteristics of a population over time.

On the graph you just analyzed, describe the average kernel protein content over time in a maize population where no selection occurred.

Check Your Understanding

The gold half of the Check Your Understanding boxes summarizes important information from the section you just read. Stop and ask yourself: Do I really understand every bullet point?

Summary of Key Concepts

The succinct Summary of Key Concepts reviews important concepts in short, manageable bullet points.
Practise with the Blue Thread.

Figure 3.23 Kinetics of an Enzyme-Catalyzed Reaction. The general shape of this curve is characteristic of enzyme-catalyzed reactions.

Exercise Label the parts of the graph that represent where (1) the reaction rate is most sensitive to changes in substrate concentration and (2) most or all of the active sites present are occupied.

Caption Questions and Exercises
These challenge you to critically examine the information in a figure or table—not just absorb it.

Evolution occurs when heritable variation leads to differential success in reproduction.

Check Your Understanding

The blue half of the Check Your Understanding boxes asks you to do something with the information in the top half. If you can’t complete these exercises, go back and reread that section of the chapter.

NEW! Suggested Answers
Suggested answers for the Blue Thread Questions and Exercises are provided in Appendix A.
Bloom’s Taxonomy

Bloom’s Taxonomy categorizes six levels of learning competency. The Blue Thread Questions and Exercises in the textbook test on the higher levels of the scale—Explain, Apply, Analyze, Evaluate, and Synthesize—to help you develop critical thinking skills and prepare you for exams.

TEST YOUR KNOWLEDGE

End-of-chapter questions are scaled along Bloom’s Taxonomy.

Canadian Research and Canadian Issues boxes each end with a question that will test or expand on your understanding of an important concept.

TEST YOUR UNDERSTANDING

End-of-chapter “You should be able to” problems or exercises help you review the key concepts declared in the gold thread.

APPLYING CONCEPTS TO NEW SITUATIONS

Challenge yourself even further by applying your understanding of the concepts to new situations.

Canadian Research 3.1 Designing New Proteins

Proteins are such useful macromolecules that scientists have used them as tools in experiments for years. For example, the protein that makes jellyfish glow, green fluorescent protein, is used by biologists to make different parts of cells visible with microscopes (see BioSkills 10 in Appendix B). In fact, rather than rely on nature to provide proteins with a desired activity, some scientists have begun to engineer new proteins themselves.

Brian Bryksa, Yasumi Horimoto, and Rickey Yada from the University of Guelph have made such a protein. It is a combination of a cow protein that kills harmful bacteria and a pig enzyme that works in the stomach and cuts up other proteins. The new protein is designed to travel to the location of a bacterial infection whereupon the enzyme portion will cut the hybrid protein in two, releasing the antimicrobial portion to fight the bacteria. Yada and his colleagues think that this hybrid protein may be used one day in either people or agriculturally important plants and animals.

Think About It: Why might this hybrid protein be better at treating infections than the antimicrobial protein by itself?
Keep sight of the big picture.

Concept maps help you to keep sight of “big picture” relationships among biological concepts.

NEW! Big Picture Concept Maps

Seven remarkable Big Picture concept maps help you synthesize information across the chapters on energy, genetics, evolution, and ecology.

Check Your Understanding

Check your understanding of these big picture relationships by answering the Blue Thread Questions.

MasteringBiology®

Your professor may assign interactive Big Picture concept map exercises at www.masteringbiology.com.
Learn to think like a scientist. Here’s how.

A unique emphasis on the process of scientific discovery and experimental design teaches you how to think like a scientist as you learn fundamental biology concepts.

Experiment Boxes
Study Experiment Boxes to help you understand how experiments are designed and give you practice interpreting data.

NEW! Experimental Inquiry Tutorials
Experimental Inquiry Tutorials based on some of biology’s most seminal experiments can be found on www.masteringbiology.com. Your instructor may assign these. They will give you practice analyzing the experimental design and data, and help you understand reasoning that led scientists from the data they collected to their conclusions.

Some of the topics include:
- The Process of Science
- Engelmann’s Photosynthesis and Wavelengths of Light
- Morgan’s Cross with White-Eyed Males
- Meselson-Stahl’s Semicconservative Replication
- Steinhardt et al and Hahn et al’s Polyspermy
- Grant’s Changes in Finch Beak Size
- Went’s Phototropism and Auxin Distribution
- Coleman’s Obesity Gene
- Connell’s Competition in Barnacles
- Bormann, Likens et al’s Nutrient Cycling in Hubbard Brook Forest

NEW! Source Citations
Each Experiment Box now cites the original research paper, encouraging you to extend your learning by exploring the primary literature.

NEW! Experiment Box Questions
Each Experiment Box now includes a question that asks students to analyze the design of the experiment.

QUESTION:
Why is the distribution of adult *Chthamalus* restricted to the upper intertidal zone?

HYPOTHESIS: Adult *Chthamalus* are competitively excluded from the lower intertidal zone.

NULL HYPOTHESIS: Adult *Chthamalus* do not thrive in the physical conditions of the lower intertidal zone.

EXPERIMENTAL SETUP:
1. Transplant rocks containing young *Chthamalus* to lower intertidal zone.
2. Let *Semibalanus* colonize the rocks.
3. Remove *Semibalanus* from half of each rock.

RESULTS:
- Competitor absent: 80%
- Competitor present: 60%

CONCLUSION: *Semibalanus* is competitively excluding *Chthamalus* from the lower intertidal zone.

NEW! Experimental Evidence for Competitive Exclusion.

QUESTION: Why was it important to carry out both treatments on the same rock? Why not use separate rocks?
Build skills that will be important to your success in future courses. At relevant points in the text, you’ll find references to the expanded BioSkills Appendix that will help you learn and practice the following foundational skills:

- **NEW!** The Metric System
- Reading Graphs
- Reading a Phylogenetic Tree
- **NEW!** Some Common Latin and Greek Roots Used in Biology
- Using Statistical Tests and Interpreting Standard Error Bars
- Reading Chemical Structures
- Using Logarithms
- Making Concept Maps
- Separating and Visualizing Molecules
- Biological Imaging: Microscopy and X-Ray Crystallography
- **NEW!** Separating Cell Components by Centrifugation
- **NEW!** Cell Culture Methods
- Combining Probabilities
- **NEW!** Model Organisms

Informative Figures

Think through complex biological processes with figures that clearly define concepts.