
This work is solely for the use of instructors and administrators for the purpose of teaching courses and assessing student learning. Unauthorized dissemination, publication or sale of the work, in whole or in part (including posting on the internet) will destroy the integrity of the work and is strictly prohibited.

MasteringChemistry, is an exclusive trademark in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

McMurry, John.
Chemistry/John E. McMurry, Cornell University, Robert C. Fay, Cornell University. —Seventh edition. pagess cm
Includes bibliographical references and index.
QD33.2.M36 2014
540—dc23
2014033963

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10—V303—18 17 16 15 14

www.pearsonhighered.com
Brief Contents

Preface xii
For Instructors xiv

1 Chemical Tools: Experimentation and Measurement 1
2 Atoms, Molecules, and Ions 33
3 Mass Relationships in Chemical Reactions 77
4 Reactions in Aqueous Solution 111
5 Periodicity and the Electronic Structure of Atoms 154
6 Ionic Compounds: Periodic Trends and Bonding Theory 195
7 Covalent Bonding and Electron-Dot Structures 222
8 Covalent Compounds: Bonding Theories and Molecular Structure 261
9 Thermochemistry: Chemical Energy 311
10 Gases: Their Properties and Behavior 358
11 Liquids, Solids, and Phase Changes 410
12 Solutions and Their Properties 447
13 Chemical Kinetics 491
14 Chemical Equilibrium 553
15 Aqueous Equilibria: Acids and Bases 603
16 Applications of Aqueous Equilibria 656
17 Thermodynamics: Entropy, Free Energy, and Equilibrium 715
18 Electrochemistry 756
19 Nuclear Chemistry 808
20 Transition Elements and Coordination Chemistry 840
21 Metals and Solid-State Materials 892
22 The Main-Group Elements 927
23 Organic and Biological Chemistry 978
Contents

Preface xii
For Instructors xiv

1 Chemical Tools: Experimentation and Measurement 1
 1.1 The Scientific Method in a Chemical Context: Improved Pharmaceutical Insulin 2
 1.2 Experimentation and Measurement 6
 1.3 Mass and Its Measurement 8
 1.4 Length and Its Measurement 8
 1.5 Temperature and Its Measurement 9
 1.6 Derived Units: Volume and Its Measurement 11
 1.7 Derived Units: Density and Its Measurement 12
 1.8 Derived Units: Energy and Its Measurement 14
 1.9 Accuracy, Precision, and Significant Figures in Measurement 16
 1.10 Rounding Numbers 18
 1.11 Calculations: Converting from One Unit to Another 20

INQUIRY >>> What are the unique properties of nanoscale materials? 23

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems

2 Atoms, Molecules, and Ions 33
 2.1 Chemistry and the Elements 34
 2.2 Elements and the Periodic Table 35
 2.3 Some Common Groups of Elements and Their Properties 38
 2.4 Observations Supporting Atomic Theory: The Conservation of Mass and the Law of Definite Proportions 41
 2.5 The Law of Multiple Proportions and Dalton’s Atomic Theory 43
 2.6 Atomic Structure: Electrons 45
 2.7 Atomic Structure: Protons and Neutrons 47
 2.8 Atomic Numbers 49
 2.9 Atomic Weights and the Mole 51
 2.10 Mixtures and Chemical Compounds; Molecules and Covalent Bonds 54
 2.11 Ions and Ionic Bonds 58
 2.12 Naming Chemical Compounds 60

INQUIRY >>> How is the principle of atom economy used to minimize waste in a chemical synthesis? 66

Study Guide • Key Terms • Conceptual Problems • Section Problems • Chapter Problems

3 Mass Relationships in Chemical Reactions 77
 3.1 Representing Chemistry on Different Levels 78
 3.2 Balancing Chemical Equations 79
 3.3 Chemical Arithmetic: Stoichiometry 82
 3.4 Yields of Chemical Reactions 86
 3.5 Reactions with Limiting Amounts of Reactants 88
 3.6 Percent Composition and Empirical Formulas 91
 3.7 Determining Empirical Formulas: Elemental Analysis 94
 3.8 Determining Molecular Weights: Mass Spectrometry 97

INQUIRY >>> Can alternative fuels decrease CO2 emissions? 101

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems

4 Reactions in Aqueous Solution 111
 4.1 Solution Concentration: Molarity 112
 4.2 Diluting Concentrated Solutions 114
 4.3 Electrolytes in Aqueous Solution 116
 4.4 Types of Chemical Reactions in Aqueous Solution 118
 4.5 Aqueous Reactions and Net Ionic Equations 119
 4.6 Precipitation Reactions and Solubility Guidelines 120
 4.7 Acids, Bases, and Neutralization Reactions 123
 4.8 Solution Stoichiometry 127
 4.9 Measuring the Concentration of a Solution: Titration 128
 4.10 Oxidation–Reduction (Redox) Reactions 130
 4.11 Identifying Redox Reactions 133
 4.12 The Activity Series of the Elements 135
 4.13 Redox Titrations 138
 4.14 Some Applications of Redox Reactions 141

INQUIRY >>> How do sports drinks replenish the chemicals lost in sweat? 142

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems
9 Thermochemistry: Chemical Energy 311

9.1 Energy and Its Conservation 312
9.2 Internal Energy and State Functions 314
9.3 Expansion Work 316
9.4 Energy and Enthalpy 318
9.5 Thermochemical Equations and the Thermodynamic Standard State 321
9.6 Enthalpies of Chemical and Physical Changes 323
9.7 Calorimetry and Heat Capacity 325
9.8 Hess’s Law 329
9.9 Standard Heats of Formation 331
9.10 Bond Dissociation Energies 334
9.11 Fossil Fuels, Fuel Efficiency, and Heats of Combustion 335
9.12 An Introduction to Entropy 337
9.13 An Introduction to Free Energy 340

INQUIRY >>> How is the energy content of new fuels determined? 344

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

10 Gases: Their Properties and Behavior 358

10.1 Gases and Gas Pressure 359
10.2 The Gas Laws 364
10.3 The Ideal Gas Law 369
10.4 Stoichiometric Relationships with Gases 372
10.5 Mixtures of Gases: Partial Pressure and Dalton’s Law 375
10.6 The Kinetic–Molecular Theory of Gases 378
10.7 Gas Diffusion and Effusion: Graham’s Law 380
10.8 The Behavior of Real Gases 383
10.9 The Earth’s Atmosphere and Air Pollution 384
10.10 The Greenhouse Effect 389
10.11 Climate Change 394

INQUIRY >>> Which gases are greenhouse gases? 392

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

11 Liquids, Solids, and Phase Changes 410

11.1 Properties of Liquids 411
11.2 Phase Changes between Solids, Liquids, and Gases 412

11.3 Evaporation, Vapor Pressure, and Boiling Point 417
11.4 Kinds of Solids 420
11.5 Probing the Structure of Solids: X-Ray Crystallography 422
11.6 The Packing of Spheres in Crystalline Solids: Unit Cells 425
11.7 Structures of Some Ionic Solids 430
11.8 Structures of Some Covalent Network Solids 432
11.9 Phase Diagrams 435

INQUIRY >>> How is caffeine removed from coffee? 437

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

12 Solutions and Their Properties 447

12.1 Solutions 448
12.2 Energy Changes and the Solution Process 449
12.3 Concentration Units for Solutions 454
12.4 Some Factors That Affect Solubility 458
12.5 Physical Behavior of Solutions: Colligative Properties 462
12.6 Vapor-Pressure Lowering of Solutions: Raoults’s Law 462
12.7 Boiling-Point Elevation and Freezing-Point Depression of Solutions 469
12.8 Osmosis and Osmotic Pressure 473
12.9 Fractional Distillation of Liquid Mixtures 477

INQUIRY >>> How does hemodialysis cleanse the blood of patients with kidney failure? 479

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

13 Chemical Kinetics 491

13.1 Reaction Rates 492
13.2 Rate Laws and Reaction Order 497
13.3 Method of Initial Rates: Experimental Determination of a Rate Law 500
13.4 Integrated Rate Law: Zeroth-Order Reactions 503
13.5 Integrated Rate Law: First-Order Reactions 505
13.6 Integrated Rate Law: Second-Order Reactions 510
13.7 Reaction Rates and Temperature: The Arrhenius Equation 514
13.8 Using the Arrhenius Equation 518
13.9 Reaction Mechanisms 520
13.10 Rate Laws for Elementary Reactions 524
13.11 Rate Laws for Overall Reactions 526
14 Chemical Equilibrium 553

14.1 The Equilibrium State 554
14.2 The Equilibrium Constant K_c 556
14.3 The Equilibrium Constant K_p 561
14.4 Heterogeneous Equilibria 564
14.5 Using the Equilibrium Constant 565
14.6 Factors that Alter the Composition of an Equilibrium Mixture: Le Châtelier’s Principle 574
14.7 Altering an Equilibrium Mixture: Changes in Concentration 575
14.8 Altering an Equilibrium Mixture: Changes in Pressure and Volume 579
14.9 Altering an Equilibrium Mixture: Changes in Temperature 581
14.10 The Link between Chemical Equilibrium and Chemical Kinetics 584

INQUIRY >>> How does equilibrium affect oxygen transport in the bloodstream? 588

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

15 Aqueous Equilibria: Acids and Bases 603

15.1 Acid–Base Concepts: The Brønsted–Lowry Theory 604
15.2 Acid Strength and Base Strength 608
15.3 Factors That Affect Acid Strength 610
15.4 Dissociation of Water 613
15.5 The pH Scale 616
15.6 Measuring pH 618
15.7 The pH in Solutions of Strong Acids and Strong Bases 619
15.8 Equilibria in Solutions of Weak Acids 621
15.9 Calculating Equilibrium Concentrations in Solutions of Weak Acids 623
15.10 Percent Dissociation in Solutions of Weak Acids 627
15.11 Polyprotic Acids 628
15.12 Equilibria in Solutions of Weak Bases 632
15.13 Relation between K_a and K_b 634

15.14 Acid–Base Properties of Salts 636
15.15 Lewis Acids and Bases 640

INQUIRY >>> What is acid rain and what are its effects? 643

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

16 Applications of Aqueous Equilibria 656

16.1 Neutralization Reactions 657
16.2 The Common-Ion Effect 660
16.3 Buffer Solutions 664
16.4 The Henderson–Haselbalch Equation 669
16.5 pH Titration Curves 672
16.6 Strong Acid–Strong Base Titrations 673
16.7 Weak Acid–Strong Base Titrations 676
16.8 Weak Base–Strong Acid Titrations 681
16.9 Polyprotic Acid–Strong Base Titrations 682
16.10 Solubility Equilibria for Ionic Compounds 686
16.11 Measuring K_{sp} and Calculating Solubility from K_{sp} 688
16.12 Factors That Affect Solubility 690
16.13 Precipitation of Ionic Compounds 698
16.14 Separation of Ions by Selective Precipitation 700
16.15 Qualitative Analysis 700

INQUIRY >>> What is causing a decrease in the pH of the oceans? 703

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

17 Thermodynamics: Entropy, Free Energy, and Equilibrium 715

17.1 Spontaneous Processes 716
17.2 Enthalpy, Entropy, and Spontaneous Processes: A Brief Review 717
17.3 Entropy and Probability 720
17.4 Entropy and Temperature 724
17.5 Standard Molar Entropies and Standard Entropies of Reaction 726
17.6 Entropy and the Second Law of Thermodynamics 728
17.7 Free Energy and the Spontaneity of Chemical Reactions 730
17.8 Standard Free-Energy Changes for Reactions 733
17.9 Standard Free Energies of Formation 736
Contents

17.10 Free-Energy Changes for Reactions under Nonstandard-State Conditions 738
17.11 Free Energy and Chemical Equilibrium 740

INQUIRY Does entropy prevent the evolution of biological complexity? 744

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

18 Electrochemistry 756

18.1 Balancing Redox Reactions by the Half-Reaction Method 757
18.2 Galvanic Cells 761
18.3 Shorthand Notation for Galvanic Cells 766
18.4 Cell Potentials and Free-Energy Changes for Cell Reactions 767
18.5 Standard Reduction Potentials 769
18.6 Using Standard Reduction Potentials 773
18.7 Cell Potentials under Nonstandard-State Conditions: The Nernst Equation 775
18.8 Electrochemical Determination of pH 777
18.9 Standard Cell Potentials and Equilibrium Constants 779
18.10 Batteries 782
18.11 Corrosion 785
18.12 Electrolysis and Electrolytic Cells 787
18.13 Commercial Applications of Electrolysis 790
18.14 Quantitative Aspects of Electrolysis 793

INQUIRY How do hydrogen fuel cells work? 795

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

19 Nuclear Chemistry 808

19.1 Nuclear Reactions and Their Characteristics 809
19.2 Radioactivity 810
19.3 Nuclear Stability 813
19.4 Radioactive Decay Rates 816
19.5 Energy Changes during Nuclear Reactions 819
19.6 Nuclear Fission and Fusion 822
19.7 Nuclear Transmutation 827
19.8 Detecting and Measuring Radioactivity 828
19.9 Some Applications of Nuclear Chemistry 830

INQUIRY Are there any naturally occurring nuclear reactors? 833

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

20 Transition Elements and Coordination Chemistry 840

20.1 Electron Configurations 842
20.2 Properties of Transition Elements 844
20.3 Oxidation States of Transition Elements 847
20.4 Chemistry of Selected Transition Elements 849
20.5 Coordination Compounds 854
20.6 Ligands 856
20.7 Naming Coordination Compounds 858
20.8 Isomers 862
20.9 Enantiomers and Molecular Handedness 867
20.10 Color of Transition Metal Complexes 869
20.11 Bonding in Complexes: Valence Bond Theory 870
20.12 Crystal Field Theory 874

INQUIRY How does cisplatin kill cancer cells? 880

Study Guide • Key Terms • Key Equations • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

21 Metals and Solid-State Materials 892

21.1 Sources of the Metallic Elements 893
21.2 Metallurgy 894
21.3 Iron and Steel 897
21.4 Bonding in Metals 899
21.5 Semiconductors 902
21.6 Semiconductor Applications 905
21.7 Superconductors 909
21.8 Ceramics 912
21.9 Composites 915

INQUIRY What are quantum dots and what controls their color? 916

Study Guide • Key Terms • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

22 The Main-Group Elements 927

22.1 A Review of General Properties and Periodic Trends 928
22.2 Distinctive Properties of the Second-Row Elements 930
22.3 Group 1A: Hydrogen 932
22.4 Group 1A: Alkali Metals 937
22.5 Group 2A: Alkaline-Earth Metals 939
22.6 Group 3A: Elements 940
22.7 Group 4A: Carbon 942
22.8 Group 4A: Silicon 946
22.9 Group 5A: Nitrogen 950
22.10 Group 5A: Phosphorus 954
22.11 Group 6A: Oxygen 957
22.12 Group 6A: Sulfur 961
22.13 Group 7A: The Halogens 964
22.14 Group 8A: Noble Gases 966

INQUIRY What are the barriers to a hydrogen economy? 967

Study Guide • Key Terms • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

23 Organic and Biological Chemistry 978

23.1 Organic Molecules and Their Structures: Alkanes 979
23.2 Families of Organic Compounds: Functional Groups 983
23.3 Naming Organic Compounds 985
23.4 Carbohydrates: A Biological Example of Isomers 990
23.5 Valence Bond Theory and Orbital Overlap Pictures 993
23.6 Lipids: A Biological Example of Cis–Trans Isomerism 997

23.7 Formal Charge and Resonance in Organic Compounds 1001
23.8 Conjugated Systems 1006
23.9 Proteins: A Biological Example of Conjugation 1009
23.10 Aromatic Compounds and Molecular Orbital Theory 1014
23.11 Nucleic Acids: A Biological Example of Aromaticity 1017

INQUIRY Which is better, natural or synthetic? 1021

Study Guide • Key Terms • Conceptual Problems • Section Problems • Chapter Problems • Multiconcept Problems

Appendix A: Mathematical Operations A-1
A.1 Scientific Notation A-1
A.2 Logarithms A-4
A.3 Straight-Line Graphs and Linear Equations A-6
A.4 Quadratic Equations A-7

Appendix B: Thermodynamic Properties at 25 °C A-8
Appendix C: Equilibrium Constants at 25 °C A-13
Appendix D: Standard Reduction Potentials at 25 °C A-17
Appendix E: Properties of Water A-19
Answers to Selected Problems A-21
Glossary G-1
Index I-1
Photo/Text Credits C-1
List of Inquiries

1 Inquiry What are the unique properties of nanoscale materials? 23
2 Inquiry How is the principle of atom economy used to minimize waste in a chemical synthesis? 66
3 Inquiry Can alternative fuels decrease CO₂ emissions? 101
4 Inquiry How do sports drinks replenish the chemicals lost in sweat? 142
5 Inquiry How does knowledge of atomic emission spectra help us build more efficient light bulbs? 184
6 Inquiry How has an understanding of ionic compounds led to the production of safer solvents? 214
7 Inquiry How do we make organophosphate insecticides less toxic to humans? 250
8 Inquiry Why do different drugs have different physiological responses? 299
9 Inquiry How is the energy content of new fuels determined? 344
10 Inquiry Which gases are greenhouse gases? 392
11 Inquiry How is caffeine removed from coffee? 437
12 Inquiry How does hemodialysis cleanse the blood of patients with kidney failure? 479
13 Inquiry What causes the ozone hole? 537
14 Inquiry How does equilibrium affect oxygen transport in the bloodstream? 588
15 Inquiry What is acid rain and what are its effects? 643
16 Inquiry What is causing a decrease in the pH of the oceans? 703
17 Inquiry Does entropy prevent the evolution of biological complexity? 744
18 Inquiry How do hydrogen fuel cells work? 795
19 Inquiry Are there any naturally occurring nuclear reactors? 833
20 Inquiry How does cisplatin kill cancer cells? 880
21 Inquiry What are quantum dots and what controls their color? 916
22 Inquiry What are the barriers to a hydrogen economy? 967
23 Inquiry Which is better, natural or synthetic? 1021
About the Authors

John McMurry, educated at Harvard and Columbia, has taught more than 20,000 students in general and organic chemistry over a 40-year period. An emeritus professor of chemistry at Cornell University, Dr. McMurry previously spent 13 years on the faculty at the University of California at Santa Cruz. He has received numerous awards, including the Alfred P. Sloan Fellowship (1969–71), the National Institute of Health Career Development Award (1975–80), the Alexander von Humboldt Senior Scientist Award (1986–87), and the Max Planck Research Award (1991). With the publication of this new edition, he has now authored or coauthored 34 textbooks in various fields of chemistry.

Robert C. Fay, professor emeritus at Cornell University, taught general and inorganic chemistry at Cornell for 45 years beginning in 1962. Known for his clear, well-organized lectures, Dr. Fay was the 1980 recipient of the Clark Distinguished Teaching Award. He has also taught as a visiting professor at Harvard University and the University of Bologna (Italy). A Phi Beta Kappa graduate of Oberlin College, Dr. Fay received his Ph.D. from the University of Illinois. He has been an NSF Science Faculty Fellow at the University of East Anglia and the University of Sussex (England) and a NATO/Heineman Senior Fellow at Oxford University.

Jill K. Robinson received her Ph.D. in Analytical and Atmospheric Chemistry from the University of Colorado at Boulder. She is a Senior Lecturer at Indiana University and teaches general, analytical, and environmental chemistry courses. Her clear and relatable teaching style has been honored with several awards ranging from the Student Choice Award from the University of Wyoming Honors College to the President’s Award for Distinguished Teaching at Indiana University. She develops active learning materials for the analytical digital sciences library, promotes nanoscience education in local schools, and serves as advisor for student organizations.
FOR THE STUDENT

Francie came away from her first chemistry lecture in a glow. In one hour she found out that everything was made up of atoms which were in continual motion. She grasped the idea that nothing was ever lost or destroyed. Even if something was burned up or rotted away, it did not disappear from the face of the earth; it changed into something else—gases, liquids, and powders. Everything, decided Francie after that first lecture, was vibrant with life and there was no death in chemistry. She was puzzled as to why learned people didn't adopt chemistry as a religion.

—Betty Smith, *A Tree Grows in Brooklyn*

OK, not everyone has such a breathless response to their chemistry lectures, and few would mistake chemistry as a religion, yet chemistry is a subject with great logical beauty. We love chemistry because it explains the “why” behind many observations of the world around us and we use it every day to help us make informed choices about our health, lifestyle, and politics. Moreover, chemistry is the fundamental, enabling science that underlies many of the great advances of the last century that have so lengthened and enriched our lives. Chemistry provides a strong understanding of the physical world and will give you the foundation you need to go on and make important contributions to science and humanity.

HOW TO USE THIS BOOK

You no doubt have experience using textbooks and know they are not meant to read like a novel. We have written this book to provide you with a clear, cohesive introduction to chemistry in a way that will help you, as a new student of chemistry, understand and relate to the subject. While you could curl up with this book, you will greatly benefit from continually formulating questions and checking your understanding as you work through each section. The way this book is designed and written will help you keep your mind active, thus allowing you to digest big ideas as you learn some of the many principles of chemistry. Features of this book and how you should use them to maximize your learning are described below.

1. **Narrative:** As you read through the text, always challenge yourself to understand the “why” behind the concept. For example, you will learn that carbon forms four bonds, and the narrative will give the reason why. By gaining a conceptual understanding, you will not need to memorize a large collection of facts, making learning and retaining important principles much easier!

2. **Figures:** Figures are not optional! Most are carefully designed to summarize and convey important points. *Figure It Out* questions are included to draw your attention to a key principle. Answer the question by examining the figure and perhaps rereading the related narrative. Answers to *Figure It Out* questions are provided near the figure.

3. **Worked Examples:** Numerous worked examples are given throughout the text to show the approach for solving a certain type of problem. A stepwise procedure is used within each worked example.

 - **Identify**—The first step in problem solving is to identify key information and classify it as a known or unknown quantity. This step also involves translating between words and chemical symbols. Listing knowns on one side and unknowns on the other organizes the information and makes the process of identifying the correct strategy more visual. The *Identify* step will be used in numerical problems.

 - **Strategy**—The strategy describes how to solve the problem without actually solving it. Failing to articulate the needed strategy is a common pitfall; too often students
start manipulating numbers and variables without first identifying key equations or making a plan. Articulating a strategy will develop conceptual understanding and is highly preferable to simply memorizing the steps involved in solving a certain type of problem.

Solution—Once the plan is outlined, the key information can be used and the answer obtained.

Check—A problem is not completed until you have thought about whether the answer makes sense. Use both your practical knowledge of the world and knowledge of chemistry to evaluate your answer. For example, if heat is added to a sample of liquid water and you are asked to calculate the final temperature, you should critically consider your answer: Is the final temperature lower than the original? Shouldn’t adding heat raise the temperature? Is the new temperature above 100 °C, the boiling point of water? The **Check** step will be used in problems when the magnitude and sign of a number can be estimated or the physical meaning of the answer verified based on familiar observations.

To test your mastery of the concept explored in worked examples, two problems will follow. **PRACTICE** problems are similar in style and complexity to the worked example and will test your basic understanding. Once you have correctly completed this problem, tackle the **APPLY** problem, in which the concept is used in new situation. Video tutorials explaining some of the APPLY problems illustrate the process of expert thinking and point out how the same principle can be used in multiple ways.

4. **Conceptual Problems**: Conceptual understanding is a primary focus of this book. Conceptual problems are intended to help you with the critical skill of visualizing the structure and interactions of atoms and molecules while probing your understanding of key principles rather than your ability to correctly use numbers in an equation. The time you spend mastering these problems will provide high long-term returns by solidifying main ideas.

5. **Inquiries**: Inquiry sections connect chemistry to the world around you by highlighting useful links in the future careers of many science students. Typical themes are materials, medicine, and the environment. The goal of these sections is to deepen your understanding and aid in retention by tying concepts to memorable applications. These sections can be considered as a capstone for each chapter because **Inquiry** problems review several main concepts and calculations. These sections will also help you prepare for professional exams because they were written in the same style as new versions of these exams. For example, starting in 2015 the MCAT will provide a reading passage about a medical situation and you will be required to apply physical and chemical principles to interpret the system.

6. **End-of-Chapter Study Guide and Problem Sets**: The end-of-chapter study guide can be used either during active study of the chapter or to prepare for an exam. The concept summary provides the central idea for each section, and learning objectives specify key skills needed to solve a variety of problems. Learning objectives are linked to end-of-chapter problems so that you can assess your mastery of that skill.

Working problems is essential for success in chemistry! The number and variety of problems at the end of chapter will give you the practice needed to gain mastery of specific concept. Answers to every other problem are given in the “Answers” section at the back of the book so that you can assess your understanding.
NEW TO THIS EDITION

One of the biggest challenges for general chemistry students is that they are often overwhelmed by the number of topics and massive amount information in the course. Frequently, they do not see connections between new material and previous content, thus creating barriers to learning. Therefore, the table of contents was revised to create more uniform themes within chapters and a coherent progression of concepts that build on one another.

- The focus of Chapter 1 has been changed to experimentation and measurements. In this 7th edition, the periodic table and element properties are covered in Chapter 2 (Chemistry Fundamentals: Elements, Molecules, and Ions).
- Coverage of nuclear reactions, radioactivity, and nuclear stability has been consolidated in this edition. Copy on nuclear reactions formerly found in Chapter 2 has been moved to Chapter 19 to keep all nuclear chemistry within one chapter.
- Solution stoichiometry and titrations were moved from Chapter 3 (Mass Relationships in Chemical Reactions) to Chapter 4 (Reactions in Aqueous Solutions).
- At the suggestion of instructors who used the last edition, coverage of redox stoichiometry now appears in the electrochemistry chapter where it is most needed. This change simplifies Chapter 4, which now serves as an introduction to aqueous reactions.
- The new edition features a chapter dedicated to main group chemistry. Main group chemistry sections formerly appearing in Chapter 6: Ionic Compounds: Periodic Trends and Bonding Theory are now incorporated into Chapter 22: The Main Group Elements.
- Covalent bonding and molecular structure are now covered in two chapters (7 and 8) to avoid having to cover an overwhelming amount of material in one chapter. The topic of intermolecular forces was added to Chapter 8 to reinforce its connection to polarity.
- Nuclear chemistry has been moved forward in the table of contents because of its relevance in energy production, medicine, and the environment.
- The chapter on hydrogen and oxygen has been omitted, but key chemical properties and reactions of hydrogen and oxygen are now covered in Chapter 22: The Main Group Elements.
- Chapter 10 dealing with gases now includes content on air pollution and climate change.
- Chapter 23 has been heavily revised to review important general chemistry principles of bonding and structure as they apply to organic and biological molecules. This chapter may be covered as a standalone chapter or sections may be incorporated into earlier chapters if an instructor prefers to cover organic and biological chemistry throughout the year.

NEW! All Worked Examples have been carefully revisited in the context of newly articulated Learning Outcomes.

Worked examples are now tied to Learning Outcomes listed at chapter end and to representative EOC problems so that students can test their own mastery of each skill.

Select worked examples now contain a section called Identify, which lays out the known and unknown variables for students. Listing knowns on one side and unknowns on the other organizes the information and makes the process of identifying the correct strategy more visual. The Identify step will be used in numerical problems with equations.

Worked examples in the 7th edition now conclude with two problems, one called Practice and the other called Apply, to help students see how the same principle can be used in different types of problems with different levels of complexity.
To discourage a plug-and-chug approach to problem solving, related Worked Examples from the previous edition have been consolidated, giving students a sense of how different approaches are related.

The number of in-chapter problems has increased by 20% to encourage the students to work problems actively immediately after reading.

NEW! Inquiry Sections have been updated and integrated conceptually into each chapter.

Inquiry sections highlight the importance of chemistry, promote student interest, and deepen the students understanding of the content. The new Inquiry sections include problems that revisit several chapter concepts and can be covered in class, recitation sections, or assigned as homework in MasteringChemistry.

NEW! Chapter Study Guide offers a modern and innovative way for students to review each chapter.

Prepared in a grid format, the main lessons of each chapter are reiterated and linked to learning objectives, associated worked examples, and representative end-of-chapter problems.

NEW! Figure It Out questions promote active learning.

Selected figures are tagged with questions designed to prompt students to look at each illustration more carefully, and interpret graphs and recognize key ideas.

NEW! Looking Forward Notes are now included.

Looking Forward Notes, in addition to Remember Notes, are included to underscore and reiterate connections between topics in different chapters.

NEW! Over 600 new problems have been written for the 7th edition.

New problems ensure there is a way to assess each learning objective in the Study Guide, all of which are suitable for use in MasteringChemistry.

The seventh edition was extensively revised. Here is a list of some of the key changes made in each chapter:

Chapter 1 Chemical Tools: Experimentation and Measurement

- Chapter 1 focuses on experimentation, the scientific method, and measurement and offers a new, robust Inquiry on nanotechnology.
- The scientific method is described in the context of a case study for the development of an insulin drug.

Chapter 2 Atoms, Molecules, and Ions

- Material on the elements and periodic table previously found in Chapter 1 has been relocated here, and nuclear chemistry has been moved to the nuclear chemistry chapter.
- Coverage of the naming of binary molecular compounds was moved to a later point in the chapter to consolidate coverage of the naming of ionic compounds.

Chapter 3 Mass Relationships in Chemical Reactions

- Section 3.2 includes a revised Worked Example on balancing chemical reactions to give students a chance to use the method in simple and complex problems.
- New coverage of mass spectrometry in Section 3.8 explains how molecular weights are measured and mass spectral data is utilized in problems. The topic of mass spectrometry is connected to crime scene analysis and offers a good example of how the new edition presents chemistry in a modern way.
- A new Inquiry explores CO₂ emissions from various alternative fuels using concepts of stoichiometry.

Chapter 4 Reactions in Aqueous Solution

- Section order and coverage were revised to keep the focus on solution chemistry.
- Problems and worked examples are rearranged so that conceptual worked examples lead off the discussion rather than wrap it up.
- The new Inquiry on sports drinks applies the concepts of electrolytes, solution concentration, and solution stoichiometry.

Chapter 5 Periodicity and Electronic Structure of Atoms

- Section 5.3 on line spectra has been revised to better show how spectral lines of the elements are produced.
- Sections 5.7–5.10 offer a more continuous description of how orbitals can be described using quantum numbers.
- The Inquiry on fluorescent lights was revised to include problems that require students to write electron configurations and interpret line spectra.
Chapter 6 Ionic Compounds: Periodic Trends and Bonding Theory

- As this is the first of three chapters on bonding, it now includes some introduction to topic sequence in Chapters 6–8.
- Every chapter problem is now preceded by a Worked Example and followed by Practice and Apply problems.
- New figures in Section 6.2 help visualize why creating an ion changes the size of an atom.
- Updated Inquiry on ionic liquids includes problems on writing ion electron configurations and relating ion size to properties of the ionic compound.
- Main group chemistry now appears in Chapter 22 (Main Group Chemistry).

Chapter 7 Covalent Bonding and Electron-Dot Structures

- Chapter 7 is now dedicated to covalent bonding using the Lewis electron-dot model. Valence shell electron pair repulsion theory, molecular shape, and molecular orbital theory now appear in Chapter 8.
- Section 7.6 summarizes a general procedure for drawing electron-dot structures and applies the procedure in new Worked Examples.
- The coverage of resonance includes an introduction to the use of curved arrows to denote rearrangement of electrons, a practice that is commonly used in organic chemistry courses.
- The new Inquiry, “How do we make organophosphate insecticides less toxic to humans?,” builds on several concepts introduced in this chapter, including polar covalent bonds, electron-dot structures, and resonance.
- The chapter includes many new figures. Much of the new art appears in revised Worked Examples, replacing and/or embellishing Worked Examples appearing in the prior edition.

Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure

- The focus of Chapter 7 is covalent bonds and electron-dot structures, whereas the focus of Chapter 8 is quantum mechanical theories of covalent bonding, molecular shape, polarity, and intermolecular forces. Polarity and intermolecular forces are a direct extension of molecular shape and have been moved from Chapter 10 to Chapter 8.
- Section 8.1 on the VSEPR model explains use of solid wedges and dashed lines to draw the 3-D structure of molecules.
- Many Worked Examples in this chapter were substantively revised to reflect the chapter’s new emphasis. New figures for Worked Examples 8.3 and 8.4 illustrate orbital overlap involved in each type of bond.
- Section 8.5 includes new Figure 8.8: A flowchart to show the strategy for determining molecular polarity. Worked Example 8.6 was revised to follow this flowchart.
- A New Conceptual Worked Example on drawing hydrogen bonds and new end of chapter problems were developed.
- The Inquiry for this chapter was expanded to include intermolecular forces in biomolecular binding. Two new figures were added to illustrate how the mirror image has a different geometric arrangement of atoms and how this can lead to discrimination between these two molecules by a receptor site. New cumulative problems were added that include all topics in the chapter thus far: geometry, hybridization, polarity, intermolecular forces, and mirror images.

Chapter 9 Thermochemistry: Chemical Energy

- Section 9.2, Internal Energy and State Function, includes a new figure to illustrate \(\Delta E \) in an example of the caloric content of food.
- Section 9.4, Energy and Enthalpy, has a new figure illustrating energy transfer as heat and work in a car’s engine to help students grasp the meaning of internal energy.
- Section 9.5, entitled “Thermochemical Equations and the Thermodynamic Standard State,” covers all aspects of writing and manipulating thermochemical equations (standard state, stoichiometry, reversibility, and importance of specifying phases).
- Section 9.6 on Enthalpy of Chemical and Physical Change offers improved definitions of endothermic and exothermic phenomena, including new Worked Examples and problems on classifying reactions and identifying direction of heat transfer.

Chapter 10 Gases: Their Properties and Behavior

- Chapter 10 is revised to include three new sections on atmospheric chemistry (air pollution, the greenhouse effect, and climate change) and a new Inquiry on greenhouse gases.
- There are thirty new end-of-chapter problems that require students to describe atmospheric chemistry and utilize many chemistry skills covered thus far in the book.

Chapter 11 Liquids, Solids, and Phase Changes

- Worked Example 11.2 is new and describes how to calculate the energy change associated with heating and phase changes.
- New Section 11.5 now includes two new images to enhance discussion of X-ray diffraction experiments.
- The Inquiry on decaffeination is new and builds on the topics of phase diagrams and energy of phase changes.

Chapter 12 Solutions and Their Properties

- Section 12.2 on Energy Changes and the Solution Process includes a new figure illustrating the hydrogen bonding interactions between solute and solvent (added emphasis on chemical structure and visual explanation of solubility).
- Section 12.3 on Concentration Units for Solutions has refined coverage of concentration units and a new Worked Example on ppm and ppb.
- Section 12.6 on Vapor-Pressure Lowering includes new Worked Examples on the van’t Hoff factor and on vapor pressure lowering with a volatile solute.
- The Inquiry on dialysis was expanded and improved through the addition of an illustration of dialysis and follow-up problems dealing with solution concentration and colligative properties.
Chapter 13 Chemical Kinetics
- The first section includes a generic introduction to the concept of a reaction rate, which is now used in problems throughout the chapter instead of reaction rates specific to a reactant or product.
- A new section on Enzyme Catalysis (Section 13.14) has been added, along with new end-of-chapter problems on this topic.
- Coverage of radioactive decay formerly included in this chapter has been moved to the nuclear chemistry chapter.
- The new Inquiry on ozone depletion builds on various kinetics concepts including activation energy determination, calculation of rate, reaction mechanisms, catalysis.

Chapter 14 Chemical Equilibrium
- Section 14.2 on The Equilibrium Constant K_c has an expanded discussion and new Worked Examples dealing with manipulating equations and calculating new values of K_c.
- Section 14.4 on Heterogeneous Equilibria has been revised to clarify when concentrations of pure solids and liquids present in a chemical equation are not included in the equilibrium constant.
- Section 14.5 on Using the Equilibrium Constant has been enhanced by the addition of a new worked example on Judging the Extent of a Reaction.
- Figure 14.6, entitled Steps in Calculating Equilibrium Concentrations, was modified to include the important first step of determining reaction direction.
- The Inquiry on equilibrium and oxygen transport now includes several follow-up problems that give students practice with various equilibrium concepts.

Chapter 15 Aqueous Equilibria: Acids and Bases
- Section 15.3, Factors that Affect Acid Strength, now appears earlier in the chapter to explain why chemical structure affects acid strength, and is bolstered by new Worked Example 15.4 entitled ‘Evaluating Acid Strength Based Upon Molecular Structure’ as well as new end-of-chapter problems.
- Section 15.5 on the pH scale includes new problems exploring environmental issues.
- The Inquiry on acid rain has been updated to include new statistics and a new figure illustrating changes in acid rainfall over time.

Chapter 16 Applications of Aqueous Equilibria
- Coverage of the Henderson-Hasselbalch Equation has been reworked so that students progress from simpler problems to more complex ones.
- Reaction tables are now routinely included in titration problems to help students see what species remain at the end of the neutralization reaction. New Worked Examples are included.
- Section 16.12 on Factors that Affect Solubility has been enhanced with relevant new examples (e.g., tooth decay).
- The new and highly pertinent Inquiry for Chapter 16 on ocean acidification revisits key concepts such as acid-base reactions, buffers, and solubility equilibria in a meaningful environmental context.

Chapter 17 Thermodynamics: Entropy, Free Energy, and Equilibrium
- Section 17.3 on Entropy and Probability is enhanced with a new Worked Example and follow-up problems on the expansion of an ideal gas.
- Different signs of enthalpy and entropy in are broken down on a case-by-case basis in Section 17.7.
- The Inquiry on biological complexity was heavily revised to describe why some biological reactions are spontaneous. The Inquiry now includes concrete examples of the thermodynamics of living systems and four relevant follow-up problems.

Chapter 18 Electrochemistry
- Section on balancing redox reactions using the half-reaction method was taken out of Chapter 4 and placed in Chapter 18 based on reviewer feedback.
- Coverage of fuel cells has been streamlined and incorporated into the Inquiry. New Inquiry problems revisit core thermodynamic and electrochemical concepts.

Chapter 19 Nuclear Chemistry
- All the nuclear chemistry content is now contained in Chapter 19.
- Coverage on balancing a nuclear reaction was revised to more clearly show that mass number and atomic number are equal on both sides of the equation.
- Figure 19.3 was added to illustrate the concept of a radioactive decay series.
- Several improvements were made in Section 19.6 on Fission and Fusion: the difference between nuclear fuel rods used in a reactor and weapons-grade nuclear fuel has been clarified; Figure 19.8 has been updated to include 2013 figures for nuclear energy output.
- New end-of-chapter problems dealing with aspects of nuclear power and nuclear weapons have been added.

Chapter 20 Transition Elements and Coordination Chemistry
- Worked Example 20.5, Identifying Diastereomers, has been revised and moved earlier so that students begin with a conceptual problem.
- Worked Example 20.6, Drawing Diastereomers for Square Planar and Octahedral Complexes, was rewritten to promote conceptual understanding and discourage rote memorization.
- A new Inquiry on the mechanism of action of the antitumor drug cisplatin reinforces several concepts covered in the chapter, including nomenclature, chirality, the formation of coordination compounds, and crystal field theory.

Chapter 21 Metals and Solid-State Materials
- Band theory in metals has been clarified by
 - describing the formation of band from MOs in more detail in the text
 - revising Figure 21.6 to show that bands contain many closely spaced MOs
 - the addition of Figure It Out questions that require extension of band theory to different systems.
- New Figure 21.10 on doping of semiconductors correlates molecular picture with energy level diagrams.
• The connection between LED color and periodic trends is described in Section 21.6. New problems are included.
• The Inquiry on quantum dots was heavily revised to more clearly connect with chapter content on band theory and semiconductors.

Chapter 22 The Main-Group Elements
• Main group chemistry is consolidated into one chapter. The content has been trimmed and key concepts related to periodic trends, bonding, structure, and reactivity are reviewed in the context of main group chemistry.
• The Inquiry Section dealing with barriers to a hydrogen economy describes hydrogen production and storage methods including recent development in photocatalysts.

Chapter 23 Organic and Biological Chemistry
• This chapter was revised so that the focus is on important concepts of structure and bonding that organic chemistry instructors would like students to master in general chemistry.
• Over 50 end-of-chapter problems are completely new.
• Section 23.1 offers an introduction to skeletal structures (line drawings) commonly used as a shorthand method for drawing organic structures.
• Coverage of the alkanes is consolidated in Section 23.1 (the cycloalkanes were formerly covered in Section 23.5 in 6e.).
• Coverage of the naming of organic compounds was shortened in 7e Section 23.3 because the primary focus of the new chapter is on bonding and structure.
• Section 23.4, entitled “Carbohydrates: A Biological Example of Isomers” offers a good example of how the applied chapters at the end of the book explore key concepts (isomerism) in a relevant context (carbohydrates).
• Section 23.4 also offers a good example of how key concepts from other chapters are revisited in the applied chapters at book end. Here chirality is revisited, a subject first presented in the Chapter 8 Inquiry.
• Section 23.5 considers cis-trans isomerism in the context of valence bond theory. Two new Worked Examples are included that describe orbital overlap in organic molecules.
• The theme of cis-trans isomerism is revisited in Section 23.6 with the introduction of the lipids. New Figure 23.6, for example, shows the difference in packing of saturated and unsaturated fats and the role played by intermolecular forces.
• Section 23.5 revisits the concepts of formal charge and resonance first introduced in Ch 7. Problems in this section give students additional practice in the drawing of electron-dot structures and electron “pushing.” Common patterns of resonance in organic molecules are introduced as well.
• Section 23.8 is new to the 7th edition, covering conjugated systems in the context of resonance and orbital diagrams. New worked examples tie the section together, offering problems on drawing conjugated \(\pi \) systems, and exploring how to recognize localized vs delocalized electrons.
• Section 23.9, entitled “Proteins: A Biological Example of Conjugation” follows logically from Section 23.8 to look at conjugation in the peptide bond and proteins.
• Section 23.10, new to the 7th edition, considers aromatic compounds in the context of molecular orbital theory. Building on students’ understanding of conjugation, molecular orbital theory is invoked to describe the stability of benzene.
• Section 23.11 on the nucleic acids expands on the discussion of aromaticity in describing how aromaticity makes base stacking in the interior of the DNA molecule possible.
ACKNOWLEDGMENTS

Our thanks go to our families and to the many talented people who helped bring this new edition into being. We are grateful to Chris Hess, Acquisitions Editor, for his insight and suggestions that improved the book, to Carol Pritchard-Martinez for her critical review that made the art program and manuscript more understandable for students, to Will Moore, Marketing Manager, who brought new energy to describing features of the seventh edition, to Jenna Vittorioso, Jessica Moro, and Lisa Pierce for their production and editorial efforts. Thank you to Mimi Polk for coordinating art production, and to Liz Kincaid for her photo research efforts. We wish to thank Dr. Ben Burlingham for his contributions in the revision of Chapter 23: Organic and Biological Chemistry. His expertise teaching Organic and Biochemistry led to many improvements that will give students a strong foundation to build upon in future courses.

We are particularly pleased to acknowledge the outstanding contributions of several colleagues who created the many important supplements that turn a textbook into a complete package:

- Charity Lovitt, University of Washington, Bothell, and Christine Hermann, Radford University, who updated the accompanying Test Bank.
- Joseph Topich, Virginia Commonwealth University, who prepared both the full and partial solutions manuals.
- Mark Benvenuto, University of Detroit Mercy, who contributed valuable content for the Instructor Resource DVD.
- James Zubricky, The University of Toledo, who prepared the Student Study Guide to accompany this seventh edition.
- Dennis Taylor, Clemson University, who prepared the Instructor Resource Manual.
- Sandra Chimon-Peszek, Calumet College of St. Joseph, who updated the Laboratory Manual.

Finally, we want to thank all accuracy checkers, text reviewers, our colleagues at so many other institutions who read, criticized, and improved our work.

John McMurry
Robert C. Fay
Jill K. Robinson
REVIEWERS FOR THE SEVENTH EDITION

James Almy, Golden West College
James Ayers, CO Mesa University
Amina El-Ashmawy, Collin College
Robert Blake, Glendale Community College
Gary Buckley, Cameron University
Ken Capps, Central FL Community College
Joe Casalnuovo, Cal Poly Pomona
Sandra Chimon-Peszek, Calumet College of St. Joseph
Claire Cohen, University of Toledo
David Dobberpuhl, Creighton University
Chammi Gamage-Miller, Blinn College–Bryan Campus
Rachel Garcia, San Jacinto College
Carolyn Griffin, Grand Canyon University
Nathanial Grove, UNC Wilmington
Alton Hassell, Baylor University
Sherman Henzel, Monroe Community College
Geoff Hoops, Butler University
Andy Jorgensen, University of Toledo
Jerry Keister, SUNY Buffalo
Angela King, Wake Forest University
Regis Komperda, Wright State University
Peter Kuhlman, Denison University
Don Linn, IUPUI Fort Wayne
Rosemary Loza, Ohio State University
Rod Macrae, Marian University
Riham Mahfouz, Thomas Nelson Community College
Jack McKenna, St. Cloud State University
Craig McLauchlan, Illinois State University
Ed Navarre, Southern Illinois University Edwardsville
Christopher Nichols, California State University–Chico
Mya Norman, University of Arkansas
Kris Quinlan, University of Toronto
Betsy Ratcliffe, West Virginia University
Al Rives, Wake Forest University
Richard Roberts, Des Moines Area Community College–Ankeny
Mark Schraf, West Virginia University
Lydia Tien, Monroe Community College
Erik Wasinger, California State University–Chico
Mingming Xu, West Virginia University
James Zubricky, University of Toledo

REVIEWERS OF THE PREVIOUS EDITIONS OF CHEMISTRY

Laura Andersson, Big Bend Community College
David Atwood, University of Kentucky
Mufeed Basti, North Carolina A&T State University
David S. Ballantine, Northern Illinois University
Debbie Beard, Mississippi State University
Ronald Bost, North Central Texas University
Danielle Brabazon, Loyola College
Robert Burk, Carleton University
Myron Cherry, Northeastern State University
Allen Clabo, Francis Marion University
Paul Cohen, University of New Jersey
Katherine Covert, West Virginia University
David De Haan, University of San Diego
Nordulf W. G. Debye, Towson University
Dean Dickerhoof, Colorado School of Mines
Kenneth Dorris, Lamar University
Jon A. Draeger, University of Pittsburgh at Bradford
Brian Earle, Cedar Valley College
Amina El-Ashmawy, Collin County Community College
Joseph W. Ellison, United States Military Academy at West Point
Erik Eriksson, College of the Canyons
Peter M. Fichte, Coker College
Kathy Flynn, College of the Canyons
Joanne Follweiler, Lafayette College
Ted Foster, Folsom Lake College
Cheryl Frech, University of Central Oklahoma
Mark Frelich, University of Memphis
Mark Freitag, Creighton University
Travis Fridgen, Memorial University of Newfoundland
Jack Goldsmith, University of South Carolina Aiken
Thomas Grow, Pensacola Junior College
Katherine Geiser-Bush, Durham Technical Community College
Mildred Hall, Clark State University
Tracy A. Halmi, Pennsylvania State University Erie
Keith Hansen, Lamar University
Lois Hansen-Polcar, Cuyahoga Community College
Wesley Hanson, John Brown University
Michael Hauser, St. Louis Community College–Meramec
M. Dale Hawley, Kansas State University
Patricia Heiden, Michigan Tech University
Thomas Herrmann, University of California–San Diego
Thomas Herrington, University of San Diego
Margaret E. Holzer, California State University–Northridge
Todd Hopkins, Baylor University
Narayan S. Hosmane, Northern Illinois University
Jeff Joens, Florida International University
Jerry Keister, University of Buffalo
Chulsung Kim, University of Dubuque
Ranjit Koodali, University of South Dakota
Valerie Land, University of Arkansas Community College
John Landrum, Florida International University
Leroy Laverman, University of California–Santa Barbara
Celestia Lau, Lorain County Community College
Stephen S. Lawrence, Saginaw Valley State University
David Leddy, Michigan Technological University
Shannon Lieb, Butler University
Karen Linscott, Tri-County Technical College
Irving Lipschitz, University of Massachusetts–Lowell
Rudy Luck, Michigan Technological University
Ashley Mahoney, Bethel College
Jack F. McKenna, St. Cloud State University
Iain McNab, University of Toronto
Christina Mewhinney, Eastfield College
David Miller, California State University–Northridge
Rebecca S. Miller, Texas Tech University
Abdul Mohammed, North Carolina A&T State University
Linda Mona, United States Naval Academy
Edward Mottell, Rose-Hulman Institute
Gayle Nicoll, Texas Technological University
Allyn Ontko, University of Wyoming
Robert H. Paine, Rochester Institute of Technology
Cynthia N. Peck, Delta College
Eileen Pérez, University of South Florida
Michael R. Ross, College of St. Benedict/St. John's University
Lev Ryzhkov, Towson University
Svein Saebo, Mississippi State University
John Schriefels, George Mason University
Patricia Schroeder, Johnson County Community College
David Shoop, John Brown University
Penny Snetsinger, Sacred Heart University
Robert L. Snipp, Creighton University
Steven M. Socol, McHenry County College
Thomas E. Sorensen, University of Wisconsin–Milwaukee
L. Sreerama, St. Cloud State University
Keith Stein, University of Missouri–St. Louis
Beth Steiner, University of Akron
Kelly Sullivan, Creighton University
Susan Sutheimer, Green Mountain College
Andrew Sykes, University of South Dakota
Erach Talaty, Wichita State University
Edwin Thall, Florida Community College at Jacksonville
Donald Van Derveer, Georgia Institute of Technology
John B. Vincent, University of Alabama
Steve Watton, Virginia Commonwealth University
Marcy Whitney, University of Alabama
James Wu, Tarrant County Community College
Crystal Lin Yau, Towson University
Showing Students the Connections in Chemistry and Why They Matter

McMurry/Fay/Robinson’s Chemistry, Seventh Edition provides a streamlined presentation that blends the quantitative and visual aspects of chemistry, organizes content to highlight connections between topics and emphasizes the application of chemistry to students’ lives and careers. New content provides a better bridge between organic and biochemistry and general chemistry content, and new and improved pedagogical features make the text a true teaching tool and not just a reference book.

New MasteringChemistry features include conceptual worked examples and integrated Inquiry sections that help make critical connections clear and visible and increase students’ understanding of chemistry. The Seventh Edition fully integrates the text with new MasteringChemistry content and functionality to support the learning process before, during, and after class.

INQUIRY ➞ HOW IS CAFFEINE REMOVED FROM COFFEE?

Carbon dioxide (CO₂), a gaseous food additive in each cup of coffee, is used to displace caffeine from coffee beans, creating a solvent for caffeine extraction. The high pressure and temperature required to transform CO₂ into a liquid at temperatures above its critical temperature of 31.1 °C and critical pressure of 78.5 atm results in a supercritical CO₂ phase. This supercritical phase, which has many of the same features as that of water, can dissolve polar solutes such as caffeine. However, at room temperature and pressure, CO₂ is a gas and does not dissolve nonpolar solutes such as caffeine. However, at room temperature and pressure, CO₂ is a gas and does not dissolve nonpolar solutes such as caffeine. Temperature and pressure adjustments are made:

1. The pressure is first increased from 3.5 atm to 76 atm.
2. The temperature is then increased from 10 °C to 80 °C.

Problem 11.21

What phase of CO₂ is present in the cell in the liquid phase?

Problem 11.22

What phase of CO₂ is present in the cell in the gas phase?

Problem 11.23

A sample of supercritical carbon dioxide was present in a high pressure cell. Figure 11.23, and describe what happens to a sample when the following changes are made:

1. The temperature is increased from 100 °C to 110 °C at constant pressure of 100 atm.
2. The pressure is reduced from 100 atm to 50 atm at constant temperature of 110 °C.
3. The pressure is increased from 110 atm to 130 atm and the temperature is then increased from 100 °C to 120 °C.

Inquiry Updated inquiry sections now include worked examples and practice problems so that students can apply concepts and skills to scenarios that have relevance to their daily lives. These sections not only highlight the importance of chemistry and promote interest but also deepen students understanding of the content.
Chapter 16
Applications of Aqueous Equilibria

Chapter Openers introduce a topic and question, related to the content in the chapter that will be further discussed in the Inquiry section. The goal is to provide students with a central topic to serve as a waypoint for why the content matters to them beyond what they need to pass the next exam.

Study Guide The end-of-chapter material now includes a Study Guide to help students review each chapter. Prepared in a grid format, the main lessons of each chapter are laid out and linked to learning objectives, associated worked examples, and representative end-of-chapter problems that allow students to assess their comprehension of the material.
Helping students relate chemical reasoning to mathematical operations

WORKED EXAMPLE 19.3

Using Half-life to Calculate an Amount Remaining

Phosphorus-32, a radioactive isotope used in leukemia therapy, has a half-life of 14.26 days. What percent of a sample remains after 35.0 days?

IDENTIFY

<table>
<thead>
<tr>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 35.0) days</td>
<td>Percent of sample remaining ((N/N_0)) = 100</td>
</tr>
</tbody>
</table>

STRATEGY

The ratio of remaining \((N) \) and initial \((N_0) \) amounts of a radioactive sample at time \(t \) is given by the equation

\[
\ln \left(\frac{N}{N_0} \right) = -\frac{t}{t_{1/2}}
\]

Taking \(N_0 \) as 100%, \(N \) can then be obtained. The value of the rate constant can be found from the equation \(k = 0.693/t_{1/2} \).

SOLUTION

The value of the rate constant is calculated using the half-life:

\[
k = \frac{0.693}{14.26 \text{ days}} = 0.0486 \times 10^{-2} \text{ days}^{-1}
\]

Substituting values for \(t \) and for \(k \) into the equation gives

\[
\ln \left(\frac{N}{N_0} \right) = \left(\frac{-0.693 \times 10^{-2} \text{ days}^{-1}}{35.0 \text{ days}} \right) = -1.70
\]

Taking the natural antilogarithm of -1.70 then gives the ratio \(N/N_0 \)

\[
\frac{N}{N_0} = \text{antiln} (-1.70) = e^{-1.70} = 0.183
\]

Since the initial amount of \(^{32}\text{P}\) was 100%, we can set \(N_0 = 100 \) and solve for \(N \)

\[
\frac{N}{N_0} = 0.183 \quad \Rightarrow \quad N = (0.183)(100) = 18.3\%
\]

After 35.0 days, 18.3% of a 100% sample remains and 81.7% has decayed.

CHECK

We can estimate the accuracy by considering half-life. Since phosphorus-32 has a half-life of 14.26 days and the time is 35 days, we know the time of the reaction is more than two half-lives. After two half-lives, 75% has reacted and 25% remains. Since the time is over two half-lives, we would estimate that less than 25% remains, which agrees with the answer of 18.3%.

PRACTICE 19.7

What percentage of \(^{14}\text{C}\) (\(t_{1/2} = 5730\) years) remains in a sample estimated to be 16,230 years old?

WORKED EXAMPLE 9.2

Calculating Internal Energy Change (\(\Delta E\)) for a Reaction

The reaction of nitrogen with hydrogen to make ammonia has \(\Delta E = -92.2\) kJ. What is the value of \(\Delta E\) in kilojoules if the reaction is carried out at a constant pressure of 400 atm and the volume change is \(-1.12\) L?

\[
\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g) \quad \Delta E = -92.2\text{kJ}
\]

IDENTIFY

<table>
<thead>
<tr>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume change (\Delta V = -1.12) L</td>
<td>(\Delta E) in kilojoules</td>
</tr>
</tbody>
</table>

STRATEGY

We are given an enthalpy change \(\Delta H\), a volume change \(\Delta V\), and a pressure \(P\) and asked to find an energy change \(\Delta E\). Rearrange the equation \(\Delta E = \Delta H - PV\) to divide the form \(\Delta E = \Delta H - PV\) and substitute the appropriate values for \(\Delta H\), \(P\), and \(\Delta V\).

SOLUTION

\[
\Delta E = \Delta H - PV
\]

\[
P = (400 \text{ atm}) \times (-1.12\text{ L}) = -448\text{ atm}L
\]

\[
\Delta E = (-92.2\text{kJ}) - (-448\text{ atm}L) = -452\text{ kJ}
\]

CHECK

The sign of \(\Delta E\) is similar in size and magnitude \(\Delta H\), which is to be expected because energy transfer at work is usually small compared to heat.

PRACTICE 9.3

The reaction between hydrogen and oxygen to yield water vapor has \(\Delta E = -484\text{kJ}\). How much \(PV\) work is done, and what is the value of \(\Delta E\) in kilojoules for the reaction of 2.00 mol of \(\text{H}_2\) with 1.00 mol of \(\text{O}_2\) at atmospheric pressure if the volume change is \(-24.4\) L?

\[
2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g) \quad \Delta E = -484\text{kJ}
\]

WORKED EXAMPLE 19.4

Calculating Internal Energy Change (\(\Delta E\)) for a Reaction

After 35.0 days, 18.3% of a radioisotope used to measure the flow of gases from smokestacks, determined to be \(^{41}\text{Ar}\), has decayed. About how many years old is the sample?

IDENTIFY

<table>
<thead>
<tr>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 35.0) days</td>
<td>(N/N_0) = 0.183</td>
</tr>
</tbody>
</table>

STRATEGY

We are given the rate constant \(k\) and the half-life \(t_{1/2}\) for a first-order process and asked to find the time \(t\) that a sample decays. Rearrange the equation \(N/N_0 = e^{-kt}\) to find the time \(t\) that a sample decays.

SOLUTION

\[
\frac{N}{N_0} = e^{-kt} = 0.183
\]

\[
-t = \frac{\ln 0.183}{-0.693} = 0.261 \text{ days}
\]

\[
t = 0.261 \text{ days} \times \frac{1}{24 \text{ hours}} \times \frac{1}{365 \text{ days}} = 0.000219 \text{ years}
\]

CHECK

The result is reasonable because the rate constant \(k = 0.0486 \times 10^{-2} \text{ days}^{-1}\) is small, so it takes a long time for the sample to decay. The result also agrees with the answer obtained above, which was 16,230 years old.
When aqueous solutions of two ionic compounds are mixed, the following results are obtained:

(Only the anion of the first compound, represented by blue spheres, and the cation of the second compound, represented by red spheres, are shown.) Which cation and anion combinations are compatible with the observed results?

Answers:
- Anions: NO$_3^-$, Cl$^-$, CO$_3^{2-}$, PO$_4^{3-}$
- Cations: Ca$^{2+}$, Ag$^+$, K$^+$, Cd$^{2+}$

STRATEGY

Count the numbers of reactant and product molecules and use coefficients from the balanced equation to relate them to one another.

SOLUTION

(a) Count the number of each type of molecule in the box on the reactant side of the equation. There are 3 ethylene oxide molecules and 5 water molecules. According to the balanced equation the stoichiometry between the reactants is 1:1. Therefore, 5 ethylene oxide molecules would be needed to react with 5 water molecules. Since there are only 3 ethylene oxide molecules, it is the limiting reactant, and water is in excess.

(b) Count the number of water molecules on the product side of the equation. There are 2 water molecules that have not reacted, and water is called the excess reactant.

(c) Count the number of ethylene glycol molecules on the product side of the equation. There are 3 ethylene glycol molecules present.

Therefore, the reaction of 3 ethylene oxide molecules with 5 water molecules results in 3 ethylene glycol molecules with 2 water molecules left over.

Conceptual Practice and Apply

Questions located at the end of selected Worked Examples assess understanding of principles rather than the ability to simply plug numbers into a formula.

Conceptual Worked Examples and Conceptual Questions

Worked Conceptual Examples are included throughout each chapter to emphasize the conceptual nature of problem solving, often using molecular illustrations. Conceptual problems are now always preceded by Conceptual Worked Examples.
Mastering Chemistry

Superior support beyond the classroom with MasteringChemistry®

MasteringChemistry from Pearson is the leading online homework, tutorial, and assessment system, designed to improve results by engaging students before, during, and after class with powerful content. Ensure students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics. Students can further master concepts after class through traditional and adaptive homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments in one place, while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.

Mastering brings learning full circle by continuously adapting to each student and making learning more personal than ever—before, during, and after class.

Before Class

Dynamic Study Modules Now assignable, Dynamic Study Modules (DSMs) enable your students to study on their own to be better prepared to achieve higher test scores. When your students use DSMs outside of class, you can take knowledge transfer out of the classroom, allowing class time to be spent on higher-order learning. Modules can be completed on smartphones, tablets, or computers and assignments will automatically be synced to the MasteringChemistry gradebook.

Reading Quizzes give instructors the opportunity to assign reading and test students on their comprehension of chapter content. Reading Quizzes are often useful to provide a common baseline for students prior to coming to class, thereby saving time on lower level content and allowing instructors to use in-class time on more challenging topic.
NEW! Adaptive Follow-Up Assignments allow instructors to deliver content to students — automatically personalized for each individual based on the strengths and weaknesses identified by his or her performance on initial Mastering assignments.

During Class

Learning Catalytics Learning Catalytics is a “bring your own device” student engagement, assessment, and classroom intelligence system. With Learning Catalytics you can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Improve your students’ critical-thinking skills.
- Access rich analytics to understand student performance.
- Add your own questions to make Learning Catalytics fit your course exactly.
- Manage student interactions with intelligent grouping and timing.

After Class

Student Tutorials Featuring specific wrong-answer feedback, hints, and a wide variety of educationally effective content, guide your students through the toughest topics in chemistry. The hallmark Hints and Feedback offer scaffolded instruction similar to what students would experience in an office hour, allowing them to learn from their mistakes without being given the answer.
Resources

For Students

Joseph Topich, Virginia Commonwealth University
This manual contains worked out solutions to all in-chapter problems and even-numbered end-of-chapter problems.

James Zubricky, University of Toledo
The Study Guide includes learning goals, an overview, progressive review section with worked examples, and self-tests with answers.

Sandra Chimon-Peszek, Calumet College of St. Joseph
The Laboratory Manual contains over 20 experiments that focus on real-world applications. Each experiment corresponds with one or more topics covered in each chapter.

For Instructors

Instructor Resource Center (ISBN: 013388659X)
Available for download on the Pearson catalog page at www.pearsonhighered.com
Mark Benvenuto, University of Detroit Mercy
This resource contains the following:
• All illustrations, tables, and photos from the text in JPEG format
• Four pre-built PowerPoint Presentations (lecture, worked examples, images, CRS/clicker questions)
• TestGen computerized software with the TestGen version of the Testbank
• Word files of the Test Item File

Joseph Topich, Virginia Commonwealth University
The solutions manual provides worked-out solutions to all in-chapter, conceptual, and end-of-chapter questions and problems. With instructor’s permission, this manual may be made available to students.

Charity Lovitt, University of Washington, Bothell
The Instructor manual contains teaching tips, common misconceptions, lecture outlines, and suggested chapter learning goals for students, as well as lecture/laboratory demonstrations and literature references. It also describes the various resources, such as printed test bank questions, animations, and movies that are available to instructors.

Test Bank (ISBN: 0133890694, Download Only)
Available for download on the Pearson catalog page at www.pearsonhighered.com
Charity Lovitt, University of Washington, Bothell
Christine Hermann, Radford University
The Test Bank contains more than 4,500 multiple choice, true/false, and matching questions.