Explorations in Elementary School Science
Practice and Theory, K–8

ERMINIA PEDRETTI
Ontario Institute for Studies in Education,
University of Toronto

KATHERINE BELLOMO
Ontario Institute for Studies in Education,
University of Toronto

SUSAN JAGGER
Ontario Institute for Studies in Education,
University of Toronto

PEARSON
Toronto
To the children in our lives:
Joshua
Olivia
Madelyne
Lilianna
Tyler
Dante
Roman
Luca
Maia
Breanna
Kaitlyn

who inspire us with their sense of wonder and delight in, and with, the world.

A PERSONAL MESSAGE

We hope this book serves you well on your journey to becoming an elementary teacher of science, and that it nurtures your passion and enthusiasm for a subject that is exciting and relevant. Our intent is to provide support as you refine, redefine, and expand your practice and your theoretical perspectives. We invite you to imagine a science education that is student-centred, inclusive, joyous, inspiring, and filled with possibilities for transformative teaching and learning.
Brief Contents

PART 1 A VISION FOR SCIENCE EDUCATION
Chapter 1 Teaching Science: Beginning the Journey 1
Chapter 2 Nature of Science 21
Chapter 3 Environmental Education 39
Chapter 4 Equity, Diversity, and Social Justice in Science Education 59

PART 2 CURRICULUM DESIGN
Chapter 5 Curriculum that Meets the Needs of Students 79
Chapter 6 Curriculum Planning and Implementation 99
Chapter 7 Curriculum Fundamentals 127

PART 3 SCIENTIFIC INQUIRY
Chapter 8 Scientific Inquiry and Investigations 149
Chapter 9 Planning for Scientific Inquiry and Investigations 175

PART 4 SCIENCE, TECHNOLOGY, SOCIETY, AND THE ENVIRONMENT (STSE)
Chapter 10 Exploring Science, Technology, Society, and Environment (STSE) 199
Chapter 11 STSE Education: Planning and Pedagogy 223

PART 5 KNOWLEDGE
Chapter 12 Knowledge and Learning 247
Chapter 13 Teaching Content Knowledge: Pedagogy and Principles 267

APPENDICES
Appendix A Strategies and Graphic Organizers 285
Appendix B Preparing for Your Practicum 309
Appendix C Making a Successful Beginning to the School Year 315
Appendix D Favourite Assignments 321
Appendix E Suggested Children’s Literature for Elementary Science 333
Appendix F Planning for Field Trips 339

References 343
Name Index 355
Subject Index 359
Contents

Preface xi
Acknowledgements xvi

PART 1
A VISION FOR SCIENCE EDUCATION

1 Teaching Science: Beginning the Journey 1
 Learning Objectives 1
 Introduction 2
 What Makes a Good Teacher? 2
 Getting to Know your Students 3
 Developing a Philosophy of Teaching and Learning 5
 Transmissive, Transactive, and Transformative Approaches to Education 7
 Domains of Teacher Knowledge 8
 What is Science Education for? 9
 Arguments: What is Science Education for? 9
 Scientific Literacy 10
 Toward a Comprehensive Vision of Scientific Literacy 11
 Scientific Literacy in Curriculum Documents and Policies 12
 Literacy and Numeracy 14
 The Role of Technology in Teaching Science 15
 Exploring the Relationship Between Science and Technology 15
 Information and Communication Technologies (ICT) and Teaching Science 16
 Science, Technology, and the Curriculum 16
 Science Beyond the Classroom 17
 Science Education Research 18
 Contemporary Issues in Science Education 18
 Standardized Testing 18
 Conflicting Visions of Science Education 19
 Science Specialists in Elementary Schools 19
 Concluding Thoughts 19
 Bringing it all Together: Final Questions 20
 APPENDIX 1.A Find a classmate who… 20

2 Nature of Science 21
 Learning Objectives 21
 Introduction 22
 What is the Nature of Science? 22
 Tenets of the Nature of Science 24
 What is the Scientific Method? 25
 Laws and Theories 26
 Teaching Through, With, and for the Nature of Science 27
 Arguments for the Inclusion of Nature of Science 28
 Nature of Science: Tensions and Challenges 30
 Incorporating NOS in the Classroom 32
 Teacher Beliefs and Practices about NOS 33
 Connecting Practice and Theory 34
 Science Beyond the Classroom 35
 Concluding Thoughts 36
 Bringing it all Together: Final Questions 37
 APPENDIX 2.A Modified Card Exchange Statements for Elementary Students 37

3 Environmental Education 39
 Learning Objectives 39
 Introduction 40
 What is Environment? 40
 Why Environmental Education? 41
 Environmental Education: A Brief History of Policy and Practice 41
 Environmental Education in Canada 44
 Aboriginal Perspectives and Environmental Education 46
 Conceptualizing Environmental Education 48
 Education About-In-For the Environment 48
 Environmental Education Orientations 49
 Toward a More Critical Approach to Environmental Education 50
 Science Beyond the Classroom 51
 Place-Based Education 51
 Outdoor Education 52
 Environmental Education Resources for Planning 53
 Contemporary Issues and Ongoing Debates 55
 Concluding Thoughts 56
 Bringing it all Together: Final Questions 56
 APPENDIX 3.A Ecological Footprint Calculator Activity 57
 APPENDIX 3.B Environmental Education Curriculum and Instruction Resources 58

4 Equity, Diversity, and Social Justice in Science Education 59
 Learning Objectives 59
 Introduction 60
 A Framework for Equity, Diversity, and Social Justice in Science 60
 Social Justice in the Digital Age 62
 Marginalized Students and Issues of Identity 62
 Student Identity and Diversity 63
 Teacher Identity 64
 Exploring Aboriginal Science Education as a Social Justice Issue 65
 Fixed Borders/Fuzzy Borders: Border Crossings 68
Foundations for Social Justice in Science Education 69
Classroom Teaching 70
Culturally Relevant Pedagogy 71
Science Curriculum Guidelines and Social Justice 72
Science Curriculum for Social Justice: Some Program Suggestions 75
Suggestion 1: Inquiry and the Nature of Science 75
Suggestion 2: STSE, Problem Solving, and Community 75
Suggestion 3: The History of Science from Non-western Traditions 75
Suggestion 4: European Inventors and Inventors from Non-western Perspectives 76
Concluding Thoughts 76
Bringing it all Together: Final Questions 77
APPENDIX 4.B Grades 4–6 Outcomes and Expectations from Provincial and Territorial Guidelines 78

PART 2
CURRICULUM DESIGN

6 Curriculum Planning and Implementation 99
Learning Objectives 99
Introduction 100
Lesson and Unit Planning: An Overview 100
Unit Planning 101
Ensuring a Balanced Approach 102
Pre-planning Considerations and Decisions 103
Drafting the Unit Plan: Start with the End in Mind 106
Post-implementation Reflections 109
Lesson Planning 109
Planning Lessons: Student Considerations 109
What is a Lesson Plan? 110
Instructional Strategies 111
Lesson Design 112
Three-Part Lesson 112
Lesson Plan Components 113
The Art of Questioning 115
Bloom’s Taxonomy 116
Strategies to Extend Student Thinking 117
Classroom Management: Creating a Positive Classroom Climate 117
Program Planning 118
Awareness of Student Needs 118
Techniques and Strategies 118
Styles of Classroom Management 120
Science Beyond the Classroom: Planning Field Trips 121
Concluding Thoughts 121
Bringing it all Together: Final Questions 122
APPENDIX 6.A Year Overview Example 122
APPENDIX 6.B Lesson Plan Templates 123

7 Curriculum Fundamentals 127
Learning Objectives 127
Introduction 128
Curriculum Theory and Theorists 128
Curriculum Theorists 129
Fundamentals of Curriculum Development 132
The What, Why, and How of Curriculum 133
Students’ Needs Revisited 133
Issues and Influences Shaping Curriculum 138
Subject Matter Content Knowledge (CK) and Pedagogical Content Knowledge (PCK) 140
Exploring Elementary Science in Creative Ways: Human Body Systems 140

Concluding Thoughts 142
Bringing it all Together: Final Questions 142

APPENDIX 7.A Technological Challenge 143
APPENDIX 7.B Research Project with Presentation and Poster 143
APPENDIX 7.C Science Investigation and Science Notebook Activity 146

PART 3
SCIENTIFIC INQUIRY

8 Scientific Inquiry and Investigations 149
Learning Objectives 149
Introduction 150
Why do we do Science Investigations? 150
Scientific Inquiry and Types of Science Investigations 152
Verification (Confirmation) 153
Problem Solving (Structured and Guided Inquiry) 153
Experiments (Open Inquiry) 153
Other Types of Science Activities 158
Skills Development 158
Developing Process Skills with Elementary School Students: Classification 160
Demonstrations in the Science Classroom 161
Using Computer Technologies in Science Investigations 162
Data Collection and Management 163
Communication of Findings 163
Problem-Solving Investigations through Design Technology 167
Science Beyond the Classroom 169
Exploring Elementary Science in Creative Ways: Magnets and Magnetism 170

Concluding Thoughts 172
Bringing it all Together: Final Questions 173
APPENDIX 8.A Template for Activity 8.4: Exploring paper helicopters 174
APPENDIX 8.B Sample Student Worksheet 174

9 Planning for Scientific Inquiry and Investigations 175
Learning Objectives 175
Introduction 176
Planning for Investigations 176
Pre-Investigation Planning 176
Doing the Science Investigation 181
Post-Investigation Planning 181

Linking Investigations to Planning 187
Scaffolding for Open-Ended Experiments 187
Planning with Safety in Mind 187
Planning for Safe Science Investigations 188
Planning with Assessment in Mind 191
Science Beyond the Classroom 193
Contemporary Issues and Ongoing Debates in Science Investigations 194
Exploring Elementary Science in Creative Ways: Animal Life Cycles 194

Concluding Thoughts 196
Bringing it all Together: Final Questions 197
APPENDIX 9.A Smarter Science 197

PART 4
SCIENCE, TECHNOLOGY, SOCIETY, AND THE ENVIRONMENT (STSE)

10 Exploring Science, Technology, Society, and Environment (STSE) 199
Learning Objectives 199
Introduction 200
STSE: A Brief History 200
Benefits of STSE Education 201
Characteristics of STSE Education 203
Analyzing the Characteristics of STSE Education 205
Stewardship 205
Decision-Making 207
Values 209
Action 210
Nature of Science 213
STSE Challenges and Tensions 215
Values and Student Identity 215
Teacher Positioning 216
The Politicization of the Curriculum 217
A Research Perspective 217
Exploring Elementary Science in Creative Ways: The Rock Cycle 218

Concluding Thoughts 220
Bringing it all Together: Final Questions 221

11 STSE Education: Planning and Pedagogy 223
Learning Objectives 223
Introduction 224
Revisiting the Characteristics of STSE 224
STSE Emphases and Approaches to Planning 225
Issues-Based Approach 225
Historical Approach 228
Pedagogical Strategies for STSE Education 229
Role Play and Drama 229
Six Thinking Hats 230
Values Continuum 230
Consequence Mapping 230
Debate 230
Town Hall 230
Action-Based Community Project 233
Assessment and STSE Education 234
Planning with an STSE Focus 237
Navigating Controversy in the Science Classroom 239
Planning for Controversy in the Curriculum 240
Science Beyond the Classroom 241
Exploring Elementary Science in Creative Ways:
The Water Cycle 242
Concluding Thoughts 243
Bringing it all Together: Final Questions 244
APPENDIX 11.A Data Collection Sheet for Using Skateboarding to Debate Speeding (Activity 11.3) 245

PART 5
KNOWLEDGE

12 Knowledge and Learning 247
Learning Objectives 247
Introduction 248
Ways of Knowing 248
Science as a Way of Knowing 248
Categories of Knowledge 251
Theories of Knowledge and Theories of Learning 252
Theories of Knowledge 252
Theories of Learning 254
Summary of Theories of Learning 257
Alternative Frameworks, Misconceptions, and Conceptual Change 258
Examples of Alternative Frameworks or Misconceptions 259
Conceptual Change Theory 260
Exploring Elementary Science in Creative Ways:
Seasonal Change 262
Concluding Thoughts 264
Bringing it all Together: Final Questions 265

13 Teaching Content Knowledge:
Pedagogy and Principles 267
Learning Objectives 267
Introduction 268
Students, Content Knowledge, and Meaningful Understanding 268
Exploring Scale 269
Teaching with Analogies and Models 272
Strategies for using Analogies and Models 272
Teaching with Games 273
Strategies for using Games 274
Using Questions to Promote Learning 274
Types of Questions 275
Bloom’s Taxonomy 275
Teaching Content Knowledge with and through Technology 276
Developing a Critical Lens when Using Technology 278
Teachers’ Work and Professional Development 279
A Case Study: Teaching about Light and Sound 279
Professional Learning Communities 281
Continuing the Journey 281
Concluding Thoughts 282
Bringing it all Together: Final Questions 282

Appendix A Strategies and Graphic Organizers 285
Appendix B Preparing for Your Practicum 309
Appendix C Making a Successful Beginning to the School Year 315
Appendix D Favourite Assignments 321
Appendix E Suggested Children’s Literature for Elementary Science 333
Appendix F Planning for Field Trips 339

References 343
Name Index 355
Subject Index 359
INTRODUCTION

Elementary school science is a place where wonder, experience, and imagination come together. It is a place where children can play, investigate, and learn about the natural world they inhabit. Children’s natural curiosity contributes to the magic of the elementary classroom. As a teacher of science, we hope you will nurture children’s multiple perspectives, while challenging them to learn new and relevant material.

Each of you has a unique school science experience. Some of you may have fond memories of hands-on explorations, field trips, or demonstrations, while others may recall a science program dominated by reading of textbooks and answering end-of-chapter questions. Furthermore, you have different academic backgrounds in science. For some, science may have been a major in university; and for others, Grade 11 may have been the last time you thought about beakers and Bunsen burners, Newton’s laws, or the Kreb’s cycle. As you begin this professional journey, you have a wonderful opportunity to revisit the subject of science, develop pedagogical skills, and work collaboratively to explore the type of science program you want to create.

An elementary school teacher has the dual challenge of being both a generalist and a specialist in many areas—a feat that can be overwhelming. This textbook will support you as you become a teacher of elementary school science. We intentionally designed a book that merged practice and theory in synergistic ways. Some books on methods of teaching elementary science are collections of practical ideas and tips presented in the absence of theoretical underpinnings; others are too theoretical in nature and lack practical insights. Our aim is to strike a balance and to challenge your assumptions about what science is and how it can be taught. We hope this book will help you to feel confident and inspired as you begin your career in this important profession.

OUR VISION

We envision this book as a guide for elementary school teacher candidates. Our goals are two-fold: to provide teacher candidates with knowledge, pedagogy, and skills to be successful in a contemporary classroom, and to equip them with strategies to critique, re-imagine, and transform the elementary science experience for their students. Additionally, in-service teachers and graduate students who are looking to refine and improve their praxis may well benefit from the book.

We have deliberately incorporated a broad range of education research perspectives and activities to support teacher candidates as they explore their beliefs, improve pedagogical knowledge, and develop judgment and decision-making skills. Furthermore, we hope that a modest immersion into the science education research literature will inspire teacher candidates in the present and inform their practice in the future.

Throughout the book we have merged practice and theory with what we consider fundamental to school science in the twenty-first century. These fundamentals include an understanding of scientific literacy as a broad concept; an appreciation of the beauty and limits of science; an understanding of the nature of science (NOS) both as a process and as a product; the integration of environmental education; and a commitment to equity, social justice, and inclusive science education that meets the needs of a diverse student population.
UNIQUE APPROACH OF THE TEXTBOOK

In determining the specific features of this book, we drew upon our experiences as elementary, middle, and secondary teachers of science; science consultants; researchers; teacher education instructors; and graduate-level instructors. Our collective teaching experience spans Western, Central, and Atlantic Canada. Over the years we have surveyed preservice students across the country to gauge what they felt was important to include in a science methods textbook. Their thoughtful comments helped shape the direction and substance of this work.

Unique Features We believe this book is unique in the way that it:

● includes activities that support literacy and numeracy
● addresses science subject matter content knowledge
● provides activities for elementary students
● highlights cross-curricular connections
● raises thoughtful questions for discussion
● provides appendices containing practical guidance and support for elementary teachers
● infuses information and communications technologies
● merges educational practice, theory, and research
● features a range of practical teacher development activities

Canadian Perspectives The book is distinctly Canadian in its perspective and focus as it:

● aligns with Canadian values such as multiculturalism and inclusiveness
● draws on critical research by renowned Canadian, as well as international, science educators
● refers to Canadian provincial and territorial curriculum frameworks
● includes environmental education practice and theory
● supports equity, diversity, and social justice teaching
● incorporates Indigenous and Aboriginal ways of knowing

21st Century Learning The Canadian education system is undergoing significant change in support of the twenty-first-century classroom. The focus has shifted from what students learn to how students learn, and includes skills and competencies that can be transferred and applied in new situations. Every province has its own vocabulary to describe this body of knowledge. We have chosen to focus on seven 21st Century Skills and Competencies to respond to the challenges of the evolving classroom across the country:

1 Communication
2 Critical thinking
3 Collaboration
4 Creativity
5 Literacy and numeracy
6 Media literacy
7 Technological literacy
Each of the activities throughout the book indicates which of these 21st Century Skills and Competencies are called on. The list is featured near the beginning of each chapter for easy reference. We believe that focusing on these seven skills and competencies in the classroom will create innovative learning opportunities that will prepare both students and teachers for the complex environments of the twenty-first century.

Activities

A variety of Activities are placed throughout each chapter to help teacher candidates explore content in context. Activities are followed by Discussion Questions that ask students to reflect on their experience and provide further learning. These activities and discussion questions should prompt conversations and sharing of ideas to develop rich and comprehensive views of teaching and learning science. We have provided more activities than most courses have time for, in order to give the user freedom to choose according to needs and context. Some activities are organized around the following themes:

- Exploring Prior Knowledge and Experience: Intended for teacher candidates to access their prior knowledge related to the focus of the chapter.
- Working with Resources: Designed to familiarize teacher candidates with curriculum documents, policies, and frameworks relevant to their province or territory, as well as other resources and materials.
- Read and Reflect: Designed to encourage teacher candidates to read and reflect on the findings of research in science education.
- Connecting Practice and Theory: Designed to help teacher candidates bring practice and theory together in coherent and beneficial ways.

ACTIVITY 2.9

Planning for NOS

Working in small groups, choose a unit you are familiar with from your province’s elementary science curriculum. Describe three ways you could integrate NOS into your chosen unit. You may wish to refer to the tenets of NOS listed on pages 24–25. Be specific and provide detail. For example, you may include the work of an innovative scientist, a theory that underwent many changes, or an aspect of science that was profoundly influenced by society and/or a historical force. Use a concept map, such as the one shown in the figure below, or another organizer to help you present your ideas. Be prepared to share your work with other groups.

Appendices

The book concludes with a series of appendices that may be helpful as you prepare for your practicum and plan for teaching and learning in your future classroom. For example, you will find appendices on Strategies and Graphic Organizers, Preparing for Your Practicum, Making a Successful Beginning to the School Year, Suggested Children’s Literature for Elementary Science (with over 70 annotated titles), and Planning for Field Trips.
Preface

Other Features

ORGANIZATION OF THE BOOK

The book draws upon examples from life, physical, and Earth and space science and is organized according to the following five themes:

1. A Vision for Science Education
2. Curriculum Design
3. Scientific Inquiry and Investigations
5. Knowledge

Parts 1 and 2 provide grounding in areas such as scientific literacy, the nature of science, environmental education, social justice, meeting student needs, curriculum planning and assessment, and curriculum theory. These themes reappear throughout the book. Parts 3, 4, and 5 reflect the organization of most science curriculum documents in many provinces and territories across the country, as well as the Common Framework of Science Learning Outcomes K-12: Pan-Canadian Protocol for Collaboration on School Curriculum (CMEC, 1997).

Admittedly, we struggled with the order of topics; indeed, the table of contents went through a number of iterations. For example, some reviewers suggested that STSE should be at the beginning of the book, while others wanted to start with Scientific Inquiry. Some
argued that Knowledge, which is foundational to science, should appear earlier in the text. In the end, we chose an organization that reflects our way of conceptualizing a science education program, with the understanding that the chapters can be used in any order.

Each of the five parts comprises chapters that, while different in purpose and content, have commonalities. In general, each chapter attends to practice and theory, encourages the development of teacher judgment with respect to pedagogy, provides opportunities to connect literacy and numeracy to teaching science, and reflects teacher realities related to curriculum planning and implementation. Additionally, we have infused technology, assessment, and evaluation throughout. We recognize that information and communications technologies (ICT) can be powerful tools for accessing information, analyzing scientific processes, conducting scientific investigations, and supporting connections among students as they learn. We encourage teacher candidates to expand their own knowledge about the range of technologies available and to cultivate and apply a critical lens while developing sound pedagogical practices. Similarly, assessment and evaluation are interwoven throughout the book, so that teacher candidates can consider them in the context of inquiry, STSE, and knowledge, and as central to curriculum planning. In several chapters we highlight Aboriginal worldviews and learning science beyond the classroom. We also incorporate ready-to-use activities that teacher candidates may use with their own students in elementary and middle schools.

TECHNOLOGY RESOURCES

MyEducationLab®

The moment you know. Educators know it. Students know it. It’s that inspired moment when something that was difficult to understand suddenly makes perfect sense. Our MyLab products have been designed and refined with a single purpose in mind—to help educators create that moment of understanding with their students.

MyEducationLab® delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And, it comes from a trusted partner with educational expertise and an eye on the future.

MyEducationLab® can be used by itself or linked to any learning management system. To learn more about how MyEducationLab combines proven learning applications with powerful assessment, visit www.MyEducationLab.com.

MyEducationLab®—the moment you know.

Pearson eText Pearson eText gives students access to the text whenever and wherever they have access to the Internet. eText pages look exactly like the printed text, offering powerful new functionality for students and instructors. Users can create notes, highlight text in different colours, create bookmarks, zoom, click hyperlinked words and phrases to view definitions, and view in single-page or two-page view. Pearson eText allows for quick navigation to key parts of the eText using a table of contents, and provides full-text search.

CourseSmart for Instructors CourseSmart goes beyond traditional expectations—providing instant, online access to the textbooks and course materials you need at a lower cost for students. And even as students save money, you can save time and hassle with a digital eTextbook that allows you to search for the most relevant content at the very moment you need it. Whether it’s evaluating textbooks or creating lecture notes to help students with difficult concepts, CourseSmart can make life a little easier. See how when you visit www.coursesmart.com/instructors.
CourseSmart for Students

CourseSmart goes beyond traditional expectations—providing instant, online access to the textbooks and course materials you need at an average savings of 60 percent. With instant access from any computer and the ability to search your text, you’ll find the content you need quickly, no matter where you are. And with online tools like highlighting and note-taking, you can save time and study efficiently. See all the benefits at www.coursesmart.com/students.

Pearson Custom Library

For enrolments of at least 25 students, you can create your own textbook by choosing the chapters that best suit your own course needs. To begin building your custom text, visit www.pearsoncustomlibrary.com. You may also work with a dedicated Pearson Custom editor to create your ideal text—publishing your own original content or mixing and matching Pearson content. Contact your local Pearson Representative to get started.

Technology Specialists

Pearson’s Technology Specialists work with faculty and campus course designers to ensure that Pearson technology products, assessment tools, and online course materials are tailored to meet your specific needs. This highly qualified team is dedicated to helping schools take full advantage of a wide range of educational resources, by assisting in the integration of a variety of instructional materials and media formats. Your local Pearson sales representative can provide you with more details on this service program.

SUPPLEMENTS

The following instructor supplements are available for downloading from a password-protected section of Pearson Canada’s online catalogue (catalogue.pearsoned.ca). Navigate to this book’s catalogue page to view a list of those supplements that are available. See your local sales representative for details and access.

- Instructor’s Manual: This useful teaching aid provides an overview of the material within each chapter, as well as features such as Activities-at-a-Glance charts, modifiable line masters, and references.
- PowerPoint™ Slides: PowerPoint presentations combine graphics and text to provide premade lecture slides.

ACKNOWLEDGEMENTS

We are grateful to our students, both in elementary and middle schools and in teacher education programs, who have taught us to be better teachers of science. Their enthusiastic participation in our classrooms and their openness to new ideas, strategies, and approaches to teaching science have inspired us to write this book.

We are appreciative of the support and collaboration from the many talented and dedicated science educators we have worked with over the years—in particular Elgin Wolfe, Don Galbraith, Judith Burt, Denis Cooke, and Robbie Olivero. They have inspired and challenged us, and generously shared their wisdom and craft.

We acknowledge the immense influence of our teachers and mentors, in particular, the impact that Derek Hodson, Larry Yore, and John Wallace have had on our thinking, practice, theoretical work, and research.
Our sincere thanks to Joanne Nazir, our personal Science Education Consultant, who contributed professional opinions, research, and editorial assistance—always with a smile and good sense. A special thank you to Michelle Dubek for contributing her expertise in both science teacher education and elementary education in the supplementary materials to this book. Thank you as well to Olivia, Michelle, Nenad, Amy, James, Peter, Erin, Barb, and Limin for patiently listening and offering supportive advice.

We thank the folks at Pearson, specifically Reid McAlpine, Carolin Sweig, and Johanna Schlaepfer, for conversations that helped shape and inform this book, for their continued support (especially during pregnancies and broken arms), and for their wise counsel.

During the development of this book, we obtained many helpful and invaluable suggestions and comments from colleagues from across the country. We are indebted to the following reviewers whose insights helped improve our final manuscript:

Ron Ballentine, New Street Education Centre
Jennifer Brokofsky, Saskatoon Public Schools
H. Bruce Burton, Memorial University
L.J. Dowell-Hantelmann, Regina Public Schools
Paul Elliott, Trent University
Jane Forbes, OISE University of Toronto
Edwin Gibb, Western University
Douglas D. Karrow, Brock University
Giuliano Reis, University of Ottawa
Hyacinth Schaeffer, University of Calgary
Azza Sharkawy, Queen’s University
Aamer Shujah, University of Windsor
Jim Wiese, University of the Fraser Valley

To family and friends who graciously accepted our absences and cancellations—thank you for your understanding! Finally, a special thank you to John, Renata, Roxane, Sally, and Heather, whose unwavering support, love, and patience made this all possible.