Explorations in Secondary School Science
Practice and Theory, 7–12

ERMINIA PEDRETTI
Ontario Institute for Studies in Education,
University of Toronto

KATHERINE BELLOMO
Ontario Institute for Studies in Education,
University of Toronto

PEARSON
Toronto
To Joshua and to our nieces and nephews—whose joy, wonder, and delight, in and with the natural world, inspire us.

A PERSONAL MESSAGE

We hope this book serves you well on your journey to becoming a secondary science teacher and that it nurtures your passion and enthusiasm for a discipline that is grounded in a rich tradition of research and evidence-based practices. Our intent is to help provide support as you refine, redefine, and expand both your theoretical perspectives and your practice. We invite you to imagine a science education that is student-centred, inclusive, joyous, inspiring, and filled with possibilities for transformative teaching and learning.
Brief Contents

PART 1 A VISION FOR SCIENCE EDUCATION

Chapter 1 Teaching Science: Beginning the Journey 1
Chapter 2 Nature of Science 23
Chapter 3 Equity, Diversity, and Social Justice in Science 37

PART 2 CURRICULUM DESIGN

Chapter 4 Curriculum That Meets the Needs of Students 57
Chapter 5 Curriculum Planning and Implementation 77
Chapter 6 Curriculum Fundamentals 105

PART 3 SCIENTIFIC INQUIRY

Chapter 7 Scientific Inquiry and Laboratory (“Lab”) Work 121
Chapter 8 Safety, Demonstrations, and Simulations 143
Chapter 9 Planning for Science “Labs“ 163

PART 4 SCIENCE, TECHNOLOGY, SOCIETY, AND THE ENVIRONMENT (STSE)

Chapter 10 Science, Technology, Society, and Environment (STSE) Education 183
Chapter 11 STSE Education: Curriculum Planning and Pedagogy 201
Chapter 12 Environmental Education 225

PART 5 KNOWLEDGE

Chapter 13 Knowledge and Learning 243
Chapter 14 Teaching Content Knowledge: Pedagogy and Principles 261
Chapter 15 Exploring Subject Matter Content Knowledge in Science 275

APPENDICES

Appendix A Strategies and Graphic Organizers 293
Appendix B Preparing for the Practicum 311
Appendix C Making a Successful Beginning to the School Year 315
Appendix D Favourite Assignments 321

References 331
Name Index 341
Subject Index 345
Contents

Preface xi

PART 1
A VISION FOR SCIENCE EDUCATION

1 Teaching Science: Beginning the Journey 1
Learning Objectives 1
Introduction 2
Developing a Philosophy of Teaching and Learning 2
Domains of Teacher Knowledge 8
What Is Science Education For? 7
Intrinsic Value 7
Citizenship Science 7
Utilitarianism 7
Scientific Literacy 8
Toward a Comprehensive Vision of Scientific Literacy 10
Scientific Literacy, Policies, and Documents 10
The Role of Technology in Science Education 12
Exploring the Relationship Between Science and Technology 12
Information and Communication Technologies and Teaching Science 13
Science, Technology, and the Curriculum 14
Beyond School Science 14
Science Education Research 15
Contemporary Issues and Ongoing Debates in Science Education 15
Standardized Testing 16
Conflicting Visions 16
Concluding Thoughts 16
Bringing It All Together: Final Questions 17
APPENDIX 1.A Find Someone Who…(Getting to Know One Another) 18
APPENDIX 1.B Transcript of a Grade 9 Science Lesson (Advanced Level) 18

2 Nature of Science 23
Learning Objectives 23
Introduction 24
What Is the Nature of Science? 24
Tenets of the Nature of Science 25
What Is the Scientific Method? 25
Inductive and Deductive Approaches 26
Teaching Through, With, and for the Nature of Science 28
Arguments for the Inclusion of the Nature of Science 29
The Nature of Science: Tensions and Challenges 30
Incorporating the Nature of Tensions into the Classroom 31
Teacher Beliefs and Practices About the Nature of Science 33
Connecting Practice and Theory 34
Beyond School Science 35
Concluding Thoughts 35
Bringing It All Together: Final Questions 36

3 Equity, Diversity, and Social Justice in Science 37
Learning Objectives 37
Introduction 38
A Framework for Equity, Diversity, and Social Justice in Science 38
Characteristics of the Framework 39
Social Justice in a Digital Age 41
Marginalized Students and Issues of Identity 41
Student Identity and Diversity 41
Teacher Identity 43
Exploring Aboriginal Science Education as a Justice Issue 44
Fixed Borders/Fuzzy Borders: Border Crossings 46
Foundations for Social Justice in Science Education 48
Classroom Teaching 49
Culturally Relevant Pedagogy (CRP) 49
Exploring a Science Curriculum Topic: Food 50
Science Curriculum for Social Justice: Some Program Suggestions 52
Suggestion 1: Inquiry and the Nature of Science 52
Suggestion 2: STSE, Problem Solving, and Community 53
Suggestion 3: Identity and the Social Versus Biological Construction of Race 53
Suggestion 4: The History of Science from Non-Western Traditions 53
Suggestion 5: European Inventors and Inventors from Non-Western Perspectives 53
Concluding Thoughts 54
Bringing It All Together: Final Questions 55

PART 2
CURRICULUM DESIGN

4 Curriculum That Meets the Needs of Students 57
Learning Objectives 57
Introduction 58
Creating a Supportive and Inclusive Learning Environment 58
Culturally Relevant Teaching 58
Differentiated Instruction 59
Knowing Students and Meeting Their Learning Needs 61
Theories of Learning 61
The Role of Affect 62
Multiple Intelligences 62
Planning for Unique Learning Needs 64
Science and Language and Mathematics 65
Science and Language 65
Science and Mathematics 68
Assessment and Evaluation 70
Types of Assessment 71
Assessment Strategies and Tools 72
Self-Assessments 74
Peer Assessments 74
Concluding Thoughts 75
Bringing It All Together: Final Questions 75
APPENDIX 4.A Guide for Creating a Rubric 76

5 Curriculum Planning and Implementation 77
Learning Objectives 77
Introduction 78
Lesson Planning and Unit Planning—An Overview 78
Unit Planning (Long-Term Planning) 79
Ensuring Balance 80
Pre-Planning Considerations and Decisions 80
Drafting the Unit Plan: A Backward Design Approach 84
Post-Implementation Reflections 86
Lesson Planning 87
Student Considerations When Planning Lessons 87
Putting It All Together 88
What Is a Lesson Plan? 90
Instructional Strategies 91
Lesson Plan Components: Creating a Lesson Plan 92
The Art of Questioning 95
Bloom’s Taxonomy 95
Strategies to Extend Student Thinking 95
Classroom Management: Creating a Positive Classroom Climate 97
Program Planning 97
Awareness of Student Needs 97
Techniques and Strategies 97
Styles of Classroom Management 99
Bringing It All Together: Planning or Critiquing a Lesson Plan 100
Beyond School Science: Planning for Field Trips 101
Background Research 101
Permission Forms 101
Finances 101
Supervision 101
Student Materials for the Trip 102
Student Preparation Before the Trip 102
Preparing Materials for Other Teachers 102
Back at School 102
Concluding Thoughts 102
Bringing It All Together: Final Questions 103
APPENDIX 5.A Lesson Plan Templates 104

6 Curriculum Fundamentals 105
Learning Objectives 105
Introduction 106
Curriculum Theory and Theorists 106
Curriculum Theorists 107
Fundamentals of Curriculum Development 109
The What, Why, and How of Curriculum 109
Students’ Needs Revisited 109
Constructing Curriculum: Practical Considerations 110
What Do the Ministry Curriculum Documents Say? 110
How to Construct a Student Task 110
Curriculum Validations for Science Education 113
Re-Visiting Activity 6.6 114
Issues and Social Forces Shaping Curriculum 115
Concluding Thoughts 116
Bringing It All Together: Final Questions 116
APPENDIX 6.A Design Technology Challenge 117
APPENDIX 6.B Research Project with Presentation 117
APPENDIX 6.C Essay or Formal Paper 119

PART 3

7 Scientific Inquiry and Laboratory (“Lab”) Work 121
Learning Objectives 121
Introduction 122
Why Do Labs? 122
Types of Lab Work and Scientific Inquiry 124
Verification (Confirmation) 125
Problem-Solving Investigations (Structured and Guided Inquiry) 125
Experiments (Open Inquiry) 125
Correlational Studies 127
Other Lab Activities 127
An Approach to Inquiry 129
Skill Development 131
“Dry Labs” to Develop Analysis and Interpretation Skills 134
Contents

Scaffolding for Open-Ended Experiments 134
Argumentation and Open-Ended Experiments 135
Information and Communication Technologies in Science Labs 135
Data Collection 136
Communication of Findings 137
Problem-Solving Investigations through Design Technology 139
Beyond School Science 140

Concluding Thoughts 141
Bringing It All Together: Final Questions 142
APPENDIX 7.A Template for Activity 7.4—Exploring Paper Helicopters 142

8 Safety, Demonstrations, and Simulations 143
Learning Objectives 143
Introduction 144
Safety in the Science Classroom 144
--- The Physical Classroom Setting 144
--- Student Preparation 144
--- Teacher Preparation 145
--- Storage and Disposal 145
--- Liability and Negligence 146
--- Resources 146
--- Safety Symbols and Information Systems 147
--- Enacting Safety in Your Classroom 150

Demonstrations in the Science Classroom 151
--- Decomposition of Hydrogen Peroxide 153
--- Performing a Demo 153

Simulations 156
--- Concluding Thoughts 158
--- Bringing It All Together: Final Questions 159
--- APPENDIX 8.A Answers for Workplace Hazardous Materials Information System (WHMIS) Symbols 159
--- APPENDIX 8.B Sample Student Worksheet 161

9 Planning for Science “Labs” 163
Learning Objectives 163
Introduction 164
Cognitive Overload 164
Planning Considerations 165
--- Choosing the Appropriate Type of Lab and Approach 165
--- Pre-Lab Planning 166
--- The Lab Period 171
--- Post-Lab Planning 172

Planning with Assessment in Mind 177
Linking Types of Lab Work to Planning Considerations 179
Beyond School Science 180

Concluding Thoughts 181
Bringing It All Together: Final Questions 182

PART 4
SCIENCE, TECHNOLOGY, SOCIETY, AND THE ENVIRONMENT (STSE)

10 Science, Technology, Society, and Environment (STSE) Education 183
Learning Objectives 183
Introduction 184
STSE: A Brief History 184
--- Benefits of STSE Education 185
Characteristics of STSE Education 187
Analyzing Characteristics of STSE Education 188
--- Stewardship 189
--- Decision Making 189
--- Science and Values 192
--- Action 192
--- Nature of Science (NOS) Revisited 195
STSE Challenges and Tensions 196
--- Values and Student Identity 197
--- Teacher Positioning 197
--- The Politicization of the Curriculum 198
--- A Research Perspective 199

Concluding Thoughts 200
Bringing It All Together: Final Questions 200

11 STSE Education: Curriculum Planning and Pedagogy 201
Learning Objectives 201
Introduction 202
Integrative Structures and STSE Emphases 202
Two Approaches to Planning STSE Lessons or Units 205
--- An Issues-Based Approach 205
--- An Historical Approach 207

Pedagogical Strategies for STSE Education 209
--- Consequence Mapping 209
--- Debates 210
--- Role Play 211
--- Values Continuum 211
--- Town Hall Meeting 212
--- Action-Based Inquiry Project 214

Assessment in STSE Education 215
Navigating Controversy in the Science Classroom 218

Concluding Thoughts 221
Bringing It All Together: Final Questions 221

APPENDIX 11.A Role Cards for Town Hall Meeting in Activity 11.5 222
12 Environmental Education 225
Learning Objectives 225
Introduction 226
Why Environmental Education? 226
Environmental Education: A Brief History 227
Environmental Education in Canada 228
Aboriginal Perspectives and Environmental Education 231
Conceptualizing Environmental Education 232
Education about-in-for the Environment 233
Environmental Education Orientations 233
Toward a More Critical Approach to Environmental Education 234
Beyond School Science 236
Place-Based Education 236
Outdoor Education 236
Outdoor Education Centres 237
Environmental Education: Pedagogy and Planning 238
Contemporary Issues and On-Going Debates 239
Concluding Thoughts 240
Bringing It All Together: Final Questions 241

PART 5
KNOWLEDGE

13 Knowledge and Learning 243
Learning Objectives 243
Introduction 244
Ways of Knowing 244
Science as a Way of Knowing 245
Types of Knowledge 247
Theories of Knowledge and Theories of Learning 248
Theories of Knowledge 248
Theories of Learning 249
Knowledge and Learning: Putting It All Together 253
Alternative Frameworks, “Misconceptions,” and Conceptual Change 255
Examples of Alternative Frameworks 255
Conceptual Change Theory 256
Concluding Thoughts 258
Bringing It All Together: Final Questions 259

14 Teaching Content Knowledge: Pedagogy and Principles 261
Learning Objectives 261
Introduction 262
Students, Content Knowledge, and Meaningful Understanding 262
Using Questions to Promote Learning 264
Why Ask Questions? 264
Types of Questions 265
The Role of Lectures 266
Tips and Strategies for Using Lectures 267
Teaching with Analogies and Models 267
Tips and Strategies for Using Analogies and Models 268
Teaching with Games 269
Tips and Strategies for Using Games 269
Teaching and Learning Content Knowledge with and Through Technology 270
Why Use Technology? 270
Developing a Critical Lens When Using Technology 271
Concluding Thoughts 273
Bringing It All Together: Final Questions 274
APPENDIX 14.A Sample Chem Bingo Cards 274

15 Exploring Subject Matter Content Knowledge in Science 275
Learning Objectives 275
Introduction 276
Exploring School Science Content 276
Approaching New or Difficult Concepts 285
Terminology in Science 288
Continuing the Journey 289
Concluding Thoughts 289
Bringing It All Together: Final Questions 290
APPENDIX 15.A Useful Things to Know—Biology 290
APPENDIX 15.B Useful Things to Know—Chemistry 291
APPENDIX 15.C Useful Things to Know—Physics 291
APPENDIX 15.D Useful Things to Know—Earth and Space Science 292

Appendix A Strategies and Graphic Organizers 293
Appendix B Preparing for the Practicum 311
Appendix C Making a Successful Beginning to the School Year 315
Appendix D Favourite Assignments 321

References 331
Name Index 341
Subject Index 345
INTRODUCTION

This book has existed as an idea for years—percolating through many of our conversations and informing our practice. Often, we found ourselves chatting about how to incorporate Roger Lock’s model for scientific inquiry into our teaching about laboratory work, or Derek Hodson’s framework for understanding science and technology within a broader socio-cultural context, or Glen Aikenhead’s work with Indigenous ways of knowing. At the end of every academic year, we discussed the possibility of using a textbook the next year for our secondary science methods courses. Enthusiastically, we would search for one but soon abandoned the idea, as we could not find a textbook that satisfactorily presented Canadian policies, perspectives, or initiatives or one that reflected the centrality of environment, community, culture, and worldview to schooling and science classrooms.

We wanted a book that merged theory and practice in synergistic ways. Some books were too theoretical and lacked practical perspectives, while others were a collection of practical ideas and tips without theoretical underpinnings. On many occasions we planned together for our respective classes—designing lab inquiry activities that would enable our teacher candidates to perform secondary school labs while critiquing the labs from a theoretical stance; organizing a class town hall meeting to model pedagogy appropriate for exploring science, technology, society, and environment (STSE) issues; choosing salient journal articles to create a reading package for teacher candidates to engage with a broad range of science education research literature—all the while wishing we had a textbook that reflected our vision for science education.

Consequently, over the years we continued to generate resources and materials for teaching our science methods courses within Bachelor of Education and Master of Teaching programs. It is these extensively field-tested and revised materials that form the basis of this book. In a nutshell, we set out to write the book that we wished existed.

OUR VISION

We envision this book as a guide for teacher candidates on their journey to becoming science educators. Our goals are twofold: to provide teacher candidates with knowledge, pedagogy, and skills to be successful in a contemporary classroom, and to equip them with tools to critique, re-imagine, and transform science education. Additionally, in-service teachers and graduate students who are looking to expand, refine, and improve their praxis may well benefit from the book.

We have deliberately incorporated a broad range of education research perspectives and activities to support teacher candidates as they a) explore their beliefs, b) improve pedagogical knowledge, and c) develop judgment and decision-making skills with respect to teaching and pedagogy. Furthermore, we hope that an introduction to the science education research literature will inspire teacher candidates in the present and inform their practice in the future.

Throughout the book we have merged theory and practice with what we consider fundamental to school science for the twenty-first century: an understanding of the concept of scientific literacy; an appreciation of the beauty and of the limits of science; an understanding of the nature of science, both as a process and as a product; a commitment to equity and social justice; and a commitment to inclusive science education that meets the needs of our diverse student population.
UNIQUE APPROACH OF THE TEXTBOOK

In determining the specific content, emphases, and features of this book, we drew upon our experience as secondary science teachers, science consultants, researchers, teacher education instructors, and graduate-level instructors. Our collective teaching experience spans western, central, and Atlantic Canada. Over the years we surveyed our preservice students across the country to gauge what they felt was important to include in a secondary science methods textbook. Their thoughtful comments helped shape the direction and substance of this work.

Unique Features We believe this book is unique in the way that it:
- infuses information and communications technologies
- merges educational theory, research, and practice
- features a range of practical teacher development activities
- raises thoughtful questions for discussion
- provides appendices containing practical guidance for science teachers

Canadian Perspective This book is distinctly Canadian in its perspective and its focus as it:
- aligns with Canadian values such as multiculturalism and inclusiveness
- draws on critical research by renowned Canadian as well as international, science educators
- refers to Canadian provincial and territorial curriculum frameworks
- supports equity, diversity, and social justice teaching
- incorporates Indigenous and Aboriginal ways of knowing

21st Century Learning The Canadian education system is undergoing significant change in support of the classroom of the twenty-first century. The focus has shifted from what students learn to how students learn—skills and competencies that can be transferred and applied in new situations. Every province has its own vocabulary for this knowledge, so we have chosen to focus on seven 21st Century Skills and Competencies to respond to the challenges of the evolving classroom across the country:

1. Communication
2. Critical thinking
3. Collaboration
4. Creativity
5. Literacy and Numeracy
6. Media literacy
7. Technological literacy

Each of the activities in this textbook indicates which of these 21st Century Skills and Competencies are called on. The list appears near the beginning of each chapter for easy reference. We believe that focusing on these seven skills and competencies in the classroom will create innovative learning opportunities preparing both students and teachers for the complex environments of the twenty-first century.
Activities
A variety of Activities are placed throughout each chapter to help teacher candidates explore content in context. Activities are followed by Discussion Questions that ask students to reflect on their experience and provide further learning. These activities and discussion questions should prompt conversations and sharing of ideas to develop a rich and comprehensive view of teaching and learning science. We have provided more activities than most courses have time for in order to give the user freedom to choose according to needs and context. Some activities are organized around the following themes:

- Prior Knowledge and Experience: intended for teacher candidates to access their prior knowledge related to the focus of the chapter.
- Working with Resources: designed to familiarize teacher candidates with curriculum documents, policies, and frameworks relevant to their province or territory as well as other resources and materials.
- Read and Reflect: designed to encourage teacher candidates to read research in science education and reflect on the findings.
- Connecting Theory and Practice: designed to help teacher candidates bring theory and practice together in coherent and beneficial ways.

Appendices
The book concludes with a series of Appendices that may be helpful as you prepare for a practicum and plan for teaching and learning the future. The appendices include Strategies and Graphic Organizers, Preparing for a Practicum, and Making a Successful Beginning to the School Year.

Other Features
- Each chapter opens with a series of thought-provoking quotations from students, pre-service teachers, in-service teachers, and famous individuals.
- A set of Learning Objectives at the beginning of each chapter enables students to see exactly where the chapter is going and guides them to a higher-level understanding of the chapter.
- The Safety icon alerts preservice teachers to safety issues related to a particular activity or lab.
- Each chapter is summarized in the Concluding Thoughts section.
- Each chapter closes with a section entitled Bringing It All Together, which contains two or three high-level questions to stimulate class discussion or assign as homework.
This book draws upon examples from biology, chemistry, physics, and earth and space science and is organized thematically into the following five parts:

1. A Vision for Science Education
2. Curriculum Design
3. Scientific Inquiry
5. Knowledge

Parts 1 and 2 provide grounding in areas such as scientific literacy, the nature of science, social justice, meeting student needs, curriculum planning and assessment, and curriculum theory. These themes re-appear throughout the book. Parts 3, 4, and 5 (Inquiry, STSE, and Knowledge) reflect the organization of science curriculum documents in many provinces and territories across the country as well as the Pan-Canadian Protocol for Collaboration on School Curriculum—Common Framework of Science Learning Outcomes (CMEC, 1997).

Admittedly, we struggled with the order of topics—indeed, the table of contents went through a number of iterations. For example, some reviewers suggested that STSE should be at the beginning of the book, while others wanted to start with scientific inquiry. Some argued that Knowledge, which is foundational to science, should appear earlier in the text. In the end, we chose an organization that reflected our way of conceptualizing a science education program, with the understanding that the chapters can be used in any order.

Each of the five parts is made up of three chapters, and while the chapters are different in their purpose and content, there are commonalities. In general, each chapter attends
to theory and practice, encourages the development of teacher judgment with respect to pedagogy, and reflects teacher realities related to curriculum planning and implementation. Additionally, we have infused technology, assessment, and evaluation throughout chapters.

We recognize that information and communications technologies can be powerful tools for accessing information, analyzing scientific processes, conducting scientific inquiry, and supporting connections between students as they learn. We encourage teacher candidates to expand their own knowledge about the range of technologies available and to cultivate a critical lens while developing sound pedagogical practices. Similarly, assessment and evaluation are interwoven so teacher candidates can consider them in the context of inquiry, STSE, and knowledge, and as central to curriculum planning. In several chapters we highlight Aboriginal worldviews and learning science beyond the classroom. We also incorporate ready-to-use activities that teacher candidates may use with their own students in middle and secondary schools.

TECHNOLOGY RESOURCES

MyEducationLab®

The moment you know. Educators know it. Students know it. It is that inspired moment when something that was difficult to understand suddenly makes perfect sense. Our MyLab products have been designed and refined with a single purpose in mind—to help educators create that moment of understanding with their students.

MyEducationLab® delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And it comes from a trusted partner with educational expertise and an eye on the future.

MyEducationLab® can be used by itself or linked to any learning management system. To learn more about how MyEducationLab® combines proven learning applications with powerful assessment, visit www.MyEducationLab.com.

MyEducationLab® — the moment you know.

Pearson eText

Pearson eText gives students access to the text whenever and wherever they have access to the internet. eText pages look exactly like the printed text, offering powerful new functionality for students and instructors. Users can create notes, highlight text in different colours, create bookmarks, zoom, click on hyperlinked words and phrases to view definitions, and view in single-page or two-page view. Pearson eText allows for quick navigation to key parts of the eText using a table of contents and provides full-text search.

CourseSmart for Instructors

CourseSmart goes beyond traditional expectations—providing instant, online access to the textbooks and course materials you need at a lower cost for students. And even as students save money, you can save time and hassle with a digital eTextbook that allows you to search for the most relevant content at the very moment you need it. Whether it is evaluating textbooks or creating lecture notes to help students with difficult concepts, CourseSmart can make life a little easier. See how when you visit www.coursesmart.com/instructors.

CourseSmart for Students

CourseSmart goes beyond traditional expectations—providing instant, online access to the textbooks and course materials you need at an average savings of 60 percent. With instant access from any computer and the ability to search your text, you will find the content you need quickly, no matter where you are. And with online tools like highlighting and note-taking, you can save time and study efficiently. See all the benefits at www.coursesmart.com/students.
Pearson Custom Library For enrolments of at least 25 students, you can create your own textbook by choosing the chapters that best suit your own course needs. To begin building your custom text, visit www.pearsoncustomlibrary.com. You may also work with a dedicated Pearson custom editor to create your ideal text—publishing your own original content or mixing and matching Pearson content. Contact your local Pearson representative to get started.

Technology Specialists Pearson’s Technology Specialists work with faculty and campus course designers to ensure that Pearson technology products, assessment tools, and online course materials are tailored to meet your specific needs. This highly qualified team is dedicated to helping schools take full advantage of a wide range of educational resources, by assisting in the integration of a variety of instructional materials and media formats. Your local Pearson sales representative can provide you with more details on this service program.

SUPPLEMENTS
The following instructor supplements are available for downloading from a password-protected section of Pearson Canada’s online catalogue (catalogue.pearsoned.ca). Navigate to this book’s catalogue page to view a list of those supplements that are available. See your local sales representative for details and access.

- Instructor’s Manual This useful teaching aid provides an overview of the material within each chapter as well as features such as Activities-at-a-Glance charts, modifiable line masters, and references.
- PowerPoint™ Slides PowerPoint presentations combine graphics and text to provide pre-made lecture slides.

ACKNOWLEDGEMENTS
We are grateful for the support and collaboration of many talented and dedicated science educators that we have worked with over the years in high schools and university settings. A special thanks to our colleagues, Judith Burt, Suzanne Wessenger, Ann Chlorakos, Martina Nieswandt, Elgin Wolfe, Don Galbraith, and Larry Bencze. They have inspired and challenged us, and generously shared their wisdom and craft. We are grateful to our students who taught us to be better teachers. Their enthusiastic participation in our courses and their willingness to engage with challenging ideas inspired us to write this book. We acknowledge the immense influence that Derek Hodson has had on our thinking and practice. A special thank you to Joanne Nazir, our personal science education consultant who contributed professional opinions, research, and editorial assistance; and crafted the supplementary materials to this book.

We thank the folks at Pearson, specifically Reid McAlpine, Carolin Sweig, and Johanna Schlaepfer, for conversations that helped shape and inform this book, for their continued support (especially during pregnancies and broken arms), and for their wise counsel.

During the development of this book, we obtained many helpful and invaluable suggestions and comments from colleagues from across the country. We are indebted to the following reviewers whose insights and comments helped improve our final manuscript:

Christine Adam-Carr, Ottawa Catholic School Board
Steve Alsop, York University
Leesa Blake, Toronto District School Board
Duncan Buchanan, Edmonton Catholic School District
Judith Burt, OISE, University of Toronto
Isha DeCoito, York University
Paul Elliott, Trent University
David Gowans, Calgary Catholic School District
Eric Hanson, University of British Columbia
Bernie Krynowsky, Vancouver Island University
Allan MacKinnon, Simon Fraser University
Wayne Melville, Lakehead University
Joanne Nazir, OISE, University of Toronto
Richard Pardo, Thames Valley District School Board
Bob Ritter, University of Alberta
Ann Sherman, University of New Brunswick
Dawn Sutherland, University of Winnipeg
Fiona White, Queen’s University

To family and friends who graciously accepted our absences and cancellations—thank you for your understanding! Thank you to our parents for instilling a love of learning, and an appreciation for the natural world. Finally, a special thank you to John, Renata, and Roxane, whose unwavering support, love, and patience made this all possible.

We are delighted that what began as an idea years ago has come to fruition. However, we will miss the conversations, intellectual banter, shared meals, laughter, late-night calls, and the joy of writing together.