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     L E A R N I N G  O B J E C T I V E S 

  ❶   Analyze a scatterplot to identify pos-

sible relationships in bivariate data  

  ❷   Calculate and interpret a correlation 

coeffi cient 

  ❸   Compute and interpret a linear 

regression equation  

  ❹   Use a linear regression equation for 

prediction  

❺ Calculate and interpret R-squared 

  ❻   Compute and interpret residuals  

  ❼   Distinguish between correlation and 

causation       

CONNECTIONS: CHAPTER 

In  Chapter   5    we learned how to display and describe quantitative 

data, one variable at a time. In this chapter we learn how to display 

and assess the relationship between two quantitative variables. 

This is so important a topic that not only does it have a special 

name, but it will also be revisited later in the text ( Chapter   14   ). 

Linear regression is the counterpart to the contingency tables in 

 Chapter   4   . You can think of the three  Chapters—  4   ,    5   , and    6   —as a 

set that cover descriptive statistics for categorical and quantitative 

data, with one variable or two variables.  

 Correlation and 
Linear Regression 

RONA 

 RONA, Inc., Canada’s largest retailer of hardware, home 
renovation, and gardening products, began in 1939, 
when hardware store operators in Quebec formed 
a cooperative called Les Marchards en Quincailleries 

Ltee. to circumvent a monopoly in the hardware supply business. 
It survived the rise of department store chains through the 1940s 
and 1950s, and in 1960 a sister company, Quincaillerie Ro-Na Inc., 
was established. According to popular legend, the name came 
from the first two letters of the first names of Rolland Dansereau 
and Napoleon Piotte, the company’s first presidents. 

 Other regional hardware cooperatives sprang up in Canada, 
but Ro-Na remained inside Quebec. In the 1980s Ro-Na made 
purchases and alliances, acquiring gardening, interior decorating, 
and building materials stores, and brought them under one roof 
as a big-box retailer. Ro-Na and Home Hardware (in Western 
Canada) formed Alliance RONA Home Inc. 

 Major changes were also taking place in the U.S. hardware 
industry, with the rise of Home Depot. The fierce competition 
between Home Depot and Canadian rivals began in Ontario but 
only spread to Quebec in 1998. 

 While Ro-Na’s sister company, Home Hardware, continued 
with small and medium-sized stores, other Canadian chains, such as 

6
    CHAPTER 
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Surrey, British Columbia-based Revy Home Centres, Inc., did big-box 
battle with Home Depot in suburban Toronto. Ro-Na rolled out its 
own big-box stores (calling them “large surface” stores), but hoped to 
distinguish them from the competition with great customer service. 

 During Canada’s booming economy in the 1990s home 
improvement was a flourishing business. Each of the several 
large Canadian chains needed a strategy to keep market share. 
Ro-Na chose acquisition. In 1998, the company changed its name 
to RONA, Inc., opened new stores, and made its first foray into 
Ontario. By 1999, RONA had almost 500 stores under various 
banners in eastern Canada, and sales rose to $2.1 billion. 

 RONA gained a coast-to-coast presence in the 2000s and 
equalled or surpassed Home Depot in market share, while making 
sure its stores were noticeably different from the American 
competitor. RONA, Inc. debuted on the Toronto Stock Exchange 
in October 2002. The company was now a public corporation, and 
no longer a cooperative. While RONA and Home Depot were 
the two biggest contenders in the Canadian hardware market, half 
the market was still shared by small independent hardware stores, 
along with the Home Hardware cooperative and Canadian Tire. 

 RONA’s strategy was to have stores in every segment of 
the market. It would continue to open large-surface stores as 
well as small neighbourhood stores. It attached RONA to the 
name of all of its stores. RONA wanted to “take the warehouse 
out of the warehouse concept.” Instead, its stores would offer an 
enticing shopping experience explained as “Disney meets home 
improvement.” RONA used ideas from other successful chains. And 
the company strove to please women, who made the majority of 
home improvement buying decisions. But recent years have also 
been difficult. A slow recovery following the 2008 world economic 
crisis, lower consumer confidence, and a slowdown in the housing 
market have all had a major effect on RONA’s growth. The first half of 
2011 was a particularly difficult period in the Canadian renovation 
and construction industry. And in 2012, RONA fended off an 
unsolicited takeover bid by Lowe’s. Currently, RONA has over 800 
corporate, franchise, and affiliate retail stores of all sizes, formats, and 
banners, as well as 14 distribution centres. RONA employed nearly 
30 000 people and had sales of $4.9 billion in 2012. 

 Competition in the sector remains fierce. With new 
management, store formats, smaller stores, new sales approaches, 
and a new corporate strategy, the leading company in home 
renovation is now undergoing its own corporate renovation.  

132
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Rona 133

    RONA’s quarterly sales results fluctuate widely because of the highly 
seasonal nature of renovation and construction activities. Over 80% of 
RONA’s net annual earnings come from the second and third quarters. 
Sales in the first quarter are always lowest due to low activity in renova-

tion and construction during the winter. Even in the summer and fall, poor weather 
has a major impact on sales.  

RONA sells to both contractors and homeowners. Perhaps knowing how much 
Canadians spend on home renovation nationally can help predict RONA’s sales. 
Here’s a plot showing RONA’s quarterly sales against Statistics Canada’s quarterly 
data on spending for residential renovations.  1       
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    Figure 6.1   RONA’s  Sales  ($M) and residential  Renovation 
Investment , quarterly, 2002–2012.       

If you were asked to summarize this relationship, what would you say? Clearly 
RONA’s sales grew when home renovation spending grew. This plot is an example 
of a  scatterplot , which plots one quantitative variable against another. Just by 
looking at a scatterplot, you can see patterns, trends, relationships, and even the 
occasional unusual values standing apart from the others. Scatterplots are the best 
way to start observing the relationship between two  quantitative  variables. 

 Relationships between variables are often at the heart of what we’d like to 
learn from data. 

◆ Is consumer confidence related to oil prices?  

◆ What happens to customer satisfaction as sales increase?  

◆ Is an increase in money spent on advertising related to sales?  

◆ What is the relationship between a stock’s sales volume and its price?   

 Questions such as these relate two quantitative variables and ask whether 
there is an  association  between them. Scatterplots are the ideal way to  picture  such 
associations. 

 Why is this topic the most logical one to follow  Chapters   4    and    5   ?  Chapter   4    
began with graphs and numerical summaries of categorical data, one variable at a 
time (the formal term is “univariate”). Then it moved on to contingency tables to 
examine the association between two categorical variables (called “bivariate” analy-
sis). Similarly,  Chapter   5    discussed univariate graphs and numerical summaries of 
quantitative data, one variable at a time, but stopped short of bivariate descriptive 
statistics; so there is no analogue to contingency tables. That is the role of scatter-
plots and correlation and that is why  Chapter   6    comes next! 

WHO Quarter years of 
financial data 

WHAT RONA’s  Sales  
and Canadian 
expenditures 
on residential 
Renovations  

UNITS Both in $M 
WHEN 2002–2012 
WHERE Canada 
WHY To assess RONA’s 

sales relative to 
the home renova-
tion market 

1   http://www5.statcan.gc.ca/cansim/  Table 026–0013 Residential values, by type of invest-
ment quarterly 

scatterplot, which plots one quantitative variable against another. 

there is an association  between them. 
Questions such as these relate two quantitative variables and ask whether
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134 CHAPTER 6  •  Correlation and Linear Regression

   6.1   Looking at Scatterplots 
The value of the Canadian dollar affects Canadians in a multitude of ways—from 
pricing of foreign-made products to travel costs to investment returns. For Canadian 
manufacturers selling products in the United States, a more valuable Canadian dollar 
can significantly reduce profitability. For example, if the CAD:USD exchange rate 
is 1.2:1, a $5 USD sale is worth $6 CAD. If the Canadian dollar increases in value 
to parity (1:1), a $5 USD purchase is now worth only $5 CAD to the manufacturer. 
This has caused many to argue that the higher Canadian dollar is damaging the 
Canadian manufacturing sector. 

One major driver of the value of the Canadian dollar is oil. Oil from the 
Alberta oil sands makes up a significant portion of the Canada’s total exports. To 
buy Canadian oil, foreign buyers need to purchase Canadian dollars with foreign 

WHO  Years of financial 
data 

WHAT  Official  Exchange 
Rate  and inflation-
adjusted  Price per 
Barrel  of oil 

UNITS   Exchange Rate  
(Canadian $ rela-
tive to US $);  Price 
per Barrel  (US $) 

WHEN  1980–2011 
WHERE  Canada 
WHY  To examine the 

relationship 
between exchange 
rate and price per 
barrel of oil 
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    Figure 6.2   Official  Exchange Rate  (Canadian dollar relative to the U.S. 
dollar; Source: World Bank) vs. Inflation Adjusted  Price Per Barrel  of Oil 
(in U.S. dollars; Source: U.S. Bureau of Labor Statistics) for the period 
1980–2011.       

currencies. An increase in the world price of oil increases 
total exports, subsequently increasing demand for 
Canadian dollars, driving up the value. To measure the 
effect of oil prices, we have gathered historical financial 
data on both oil prices and the value of the Canadian dollar. 
 Figure   6.2    shows a scatterplot of the Inflation Adjusted  Price 
per Barrel  of Oil (in U.S. dollars) vs. the official  Exchange 
Rate  (Canadian dollar relative to the U.S. dollar).   

   Everyone looks at scatterplots. But, if asked, many 
people would find it hard to say what to look for in a 
scatterplot. What do  you  see? Try to describe the scatter-
plot of  Price per Barrel  against  Exchange Rate .    

 First, you might say that the  direction  of the associ-
ation is important. As the price of a barrel of oil goes up, 
the exchange rate goes down. A pattern that runs from the

upper left to the lower right      is said to be  negative .

A pattern running the other way      is called  positive . 
 The second thing to look for in a scatterplot is its 

 form . If there is a straight line relationship, it will appear 

Look for  Direction : What’s 
the sign—positive, negative, 
or neither? 

Of course, we could have computed the exchange rate 
as the U.S. dollar relative to the Canadian dollar. That 
would mean computing the reciprocal of the exchange 
rate data presented in  Figure   6.2   , and then the scatter-
plot would look like this. It’s the same pattern but with 
positive association. As the price of oil increases, the 
value of the Canadian dollar increases.             
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 The second thing to look for in a scatterplot is its 
form. 

 First, you might say that the  direction of the associ-
ation is important. 
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Assigning Roles to Variables in Scatterplots 135

as a cloud or swarm of points stretched out in a generally consistent, straight form. 
For example, the scatterplot of oil prices has an underlying  linear  form, although 
some points stray away from it.    

 Scatterplots can reveal many different kinds of patterns. Often they will not be 
straight, but straight line patterns are both the most common and the most useful 
for statistics. 

 If the relationship isn’t straight, but curves gently, while still increasing or 

decreasing steadily,      we can often find ways to straighten it out. But 

if it curves sharply—up and then down, for example,     —then you’ll 
need more advanced methods.    

 The third feature to look for in a scatterplot is the  strength  of the relation-
ship. At one extreme, do the points appear tightly clustered in a single stream 

     (whether straight, curved, or bending all over the place)? Or, at the other 
extreme, do the points seem to be so variable and spread out that we can barely 

discern any trend or pattern?      The oil prices plot shows moderate 
scatter around a generally straight form. That indicates that there’s a moderately 
strong linear relationship between price and exchange rate.    

 Finally, always look for the unexpected. Often the most interesting discovery 
in a scatterplot is something you never thought to look for. One example of such 
a surprise is  an unusual observation, or  outlier,  standing away from the overall 
pattern of the scatterplot.  Such a point is almost always interesting and deserves 
special attention. You may see entire clusters or subgroups that stand away or show 
a trend in a different direction than the rest of the plot. That should raise questions 
about why they are different. They may be a clue that you should split the data into 
subgroups instead of looking at them all together.     

   6.2   Assigning Roles to Variables in Scatterplots 
Scatterplots were among the first modern mathematical displays. The idea of using 
two axes at right angles to define a field on which to display values can be traced 
back to René Descartes (1596–1650), and the playing field he defined in this way is 
formally called a  Cartesian plane,  in his honour.    

The two axes Descartes specified characterize the scatterplot. The axis that 
runs up and down is, by convention, called the  y -axis, and the one that runs from 
side to side is called the  x -axis. These terms are standard.  2    

To make a scatterplot of two quantitative variables, assign one to the  y -axis and 
the other to the  x -axis. As with any graph, be sure to label the axes clearly, and indi-
cate the scales of the axes with numbers. Scatterplots display  quantitative  variables. 

Look for  Strength : How 
much scatter? 

Look for  Unusual Features : 
Are there unusual observa-
tions or subgroups? 

Look for  Form : Straight, 
curved, something exotic, or 
no pattern? 

Library of congress

Descartes was a philosopher, famous 
for his statement  cogito, ergo sum:  I 
think, therefore I am.   

2   The axes are also called the “ordinate” and the “abscissa”—but we can never remember 
which is which because statisticians don’t generally use these terms. In Statistics (and in all 
statistics computer programs) the axes are generally called “ x ” (abscissa) and “ y ” (ordinate) 
and are usually labelled with the names of the corresponding variables. 

pattern of the scatterplot.  
an unusual observation, or  outlier,  standing away from the overall

ship. 
The third feature to look for in a scatterplot is the strength of the relation-
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136 CHAPTER 6  •  Correlation and Linear Regression

Each variable has units, and these should appear with the display—usually near 
each axis. Each point is placed on a scatterplot at a position that corresponds to 
values of these two variables. Its horizontal location is specified by its  x -value, and 
its vertical location is specified by its  y  - value variable. Together, these are known as 
coordinates  and written ( x ,  y ).             

      NOTATION ALERT: 
 So  x  and  y  are reserved letters 
as well, but not just for label-
ling the axes of a scatterplot. 
In Statistics, the assignment of 
variables to the  x - and  y -axes 
(and choice of notation for 
them in formulas) often conveys 
information about their roles as 
predictor or response. 
  Since the  y -axis variable will 
be the outcome, that is, what 
happened, and the  x -axis vari-
able will be the predictor or 
explanation, here’s a suggestion 
on how to remember which is 
which: “ x ” “explains” “why” “ y ” 
happened. It’s a bit corny, but it 
works! 

y

y

x x

(x, y)

Scatterplots made by computer programs often do not—and usually should 
not—show the  origin,  the point at    x = 0,       y = 0    where the axes meet. If both vari-
ables have values near or on both sides of zero, then the origin will be part of the 
display. If the values are far from zero, though, there’s no reason to include the ori-
gin. In fact, it’s far better to focus on the part of the Cartesian plane that contains 
the data. In our example about oil prices, the exchange rate was, of course, nowhere 
near zero, so the scatterplot in  Figure   6.2    has axes that don’t quite meet. 

Which variable should go on the  x -axis and which on the  y -axis? What we 
want to know about the relationship can tell us how to make the plot. We often 
have questions such as: 

◆ Is RONA’s employee satisfaction related to productivity?  

◆ Are increased sales at RONA’s reflected in the share price?  

◆ What other factors besides residential renovations are related to RONA’s sales?   

In all of these examples, one variable plays the role of the  explanatory  variable 
or  predictor variable , while the other takes on the role of the  response variable.  We 
place the explanatory variable on the  x -axis and the response variable on the  y -axis.  
When you make a scatterplot, you can assume that those who view it will think this 
way, so choose which variables to assign to which axes carefully. 

 The roles that we choose for variables have more to do with how we  think
about them than with the variables themselves. Just placing a variable on the  x -axis 
doesn’t necessarily mean that it explains or predicts  anything , and the variable on 
the  y -axis may not respond to it in any way. We plotted  Exchange Rate  against  Price 
per Barrel  thinking that as the price per barrel increases, the exchange rate would 
decrease. But maybe changing the exchange rate would increase the price of oil. 
If we were examining that option, we might choose to plot  Exchange Rate  as the 
explanatory variable and  Price per Barrel  as the response variable. 

 Perhaps an easier example to understand is the relationship between  Height
and  Weight  of young people. As a person grows taller, he/she gains weight. It 
makes more sense to think of  Height  explaining  Weight  than the other way around. 
In that case, we would be thinking that gaining weight might increase one’s 
height. That has been a failed experiment in North America, hence the problems 
with obesity!    

The  x - and  y -variables are sometimes referred to as the  independent  and 
 dependent  variables, respectively. The idea is that the  y -variable  depends  on the 

or  predictor variable , while the other takes on the role of the response variable.  We 
place the explanatory variable on the  x  -axis and the response variable on the x y -axis.

In all of these examples, one variable plays the role of the  explanatory variabley

The  x  - and  y -variables are sometimes referred to as the  independent  and
dependent  variables, respectively. 
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Understanding Correlation 137

x -variable and the  x -variable acts  independently  to make  y  respond. These names, 
however, conflict with other uses of the same terms in Statistics. Instead, we’ll 
sometimes use the terms “explanatory” or “predictor variable” and “response 
variable” when we’re discussing roles, but we’ll often just say  x-variable  and 
 y-variable.   

   6.3   Understanding Correlation 
 The Vancouver International Airport Authority (YVR) recently undertook a study 
to examine how energy usage was related to various factors such as outside temper-
ature, total area of the airport (since airports are always expanding!), and the num-
ber of passengers categorized as domestic, transborder (U.S.), and international. 
Data were collected on a monthly basis and summarized into quarterly totals. Of WHO  Quarter years of 

YVR data 
WHAT   Energy Use  and 

total  Passengers  
UNITS   Energy Use  (thou-

sands of kWh) 
and total  Passen-
gers  (thousands) 

WHEN  1997–2010 
WHERE  YVR (Vancouver 

International Air-
port Authority) 

WHY  To examine the 
relationship 
between energy 
use and number 
of passengers in 
order to forecast 
and budget future 
energy costs 
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    Figure 6.3    Energy Use  at YVR (kWh, 000s) and number of  Passengers  
(000s), 1997 to 2010.       

particular interest is how Energy Use and Total Passengers are related to each 
other.  Figure   6.3    shows the scatterplot.   

   As you might expect, energy use and passenger count tend to rise and fall 
together. There is a clear positive association and, the scatterplot looks linear. But 
how strong is the association? If you had to put a number (say, between 0 and 1) on 
the strength of the association, what would it be? Your measure shouldn’t depend 
on the choice of units for the variables. After all, if the data had been recorded in 
hundreds of kilowatt hours, or millions of passengers, the scatterplot would look 
the same. The direction, form, and strength won’t change, so neither should our 
measure of the association’s strength. 

 We saw a way to remove the units in the previous chapter. We can standardize 

each of the variables finding    zx = ax - x

sx
b     and    zy = ay - y

sy
b .    With these, we 

can compute a measure of strength that you’ve probably heard of: the  correlation 
coefficient : 

   r = a zx zy

n - 1
   

 Keep in mind that the  x’ s and  y’ s are paired. For each quarter, we have a meas-
ure of energy use and a passenger count. To find the correlation we multiply each 

coefficient: 
correlation
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138 CHAPTER 6  •  Correlation and Linear Regression

standardized value by the standardized value it is paired with and add up those  cross-
products.  Then we divide the total by the number of pairs minus one,  n    -     1.  3    

For  Energy Use  and  Passengers , the correlation coefficient is 0.54. 
There are alternative formulas for the correlation in terms of the variables  x

and  y . Here are two of the more common: 

   r = a (x - x)(y - y)

2a (x - x)2(y - y)2
= a (x - x)(y - y)

(n - 1)sxsy
.   

 These formulas can be more convenient for calculating correlation by hand, 
but the form given using  z -scores is best for understanding what correlation means. 

  Correlation Conditions 

  Correlation  measures the strength of the  linear  associa-
tion between two  quantitative  variables. Before you use 
correlation, you must check three  conditions:  

    ◆   Quantitative Variables Condition:   Correlation 
applies only to quantitative variables. Don’t apply cor-
relation to categorical data masquerading as quantita-
tive. Check that you know the variables’ units and what 
they measure.  

   ◆   Linearity Condition:   Sure, you can  calculate  a 
correlation coefficient for any pair of variables. But 
correlation measures the strength only of the  linear  
association and will be misleading if the relationship 
is not straight enough. What is “straight enough”? 
This question may sound too informal for a statistical 
condition, but that’s really the point. We can’t verify 
whether a relationship is linear or not. Very few rela-
tionships between variables are perfectly linear, even 
in theory, and scatterplots of real data are never per-
fectly straight. How nonlinear looking would the 
scatterplot have to be to fail the condition? This is a 
judgment call that you just have to think about. Do 
you think that the underlying relationship is curved? 
If so, then summarizing its strength with a correlation 
would be misleading.  

   ◆   Outlier Condition:   Unusual observations can dis-
tort the correlation and can make an otherwise small 
correlation look big or, on the other hand, hide a 
large correlation. It can even give an otherwise posi-
tive association a negative correlation coefficient (and 
vice versa). When you see an outlier, it’s often a good 
idea to report the correlation both with and without 
the point.   

 Each of these conditions is easy to check with a scatterplot. Many correlations 
are reported without supporting data or plots. You should still think about the con-
ditions. You should be cautious in interpreting (or accepting others’ interpretations 
of) the correlation when you can’t check the conditions for yourself. 

     NOTATION ALERT: 
 The letter  r  is always used for 
correlation, so you can’t use it 
for anything else in Statistics. 
Whenever you see an “ r ,” it’s 
safe to assume it’s a correlation. 

Finding the correlation coefficient by hand 

To find the correlation coefficient by hand, 
we’ll use a formula in original units, rather than 
z -scores. This will save us the work of having to 

standardize each individual data value first. Start with the 
summary statistics for both variables:    x   ,    y,     s x  , and  s   y  . Then 
find the deviations as we did for the standard deviation, 
but now in both  x  and  y :    (x - x)    and    (y - y)   . For each 
data pair, multiply these deviations together:    (x - x) *     
   (y - y)   . Add the products up for all data pairs. Finally, 
divide the sum by the product of    (n - 1) * sx * sy    to get 
the correlation coefficient. 

 Here we go. 

 Suppose the data pairs are:       
x   6  10  14  19  21 

  y   5  3  7  8  12 

Then    x =     14,    y = 7   ,    sx = 6.20,    and    sy = 3.39      

 Deviations 
in  x  

 Deviations
in  y   Product 

     6 - 14 = -8        5 - 7 = -2        -8 * -2 = 16    

     10 - 14 = -4        3 - 7 = -4      16  

     14 - 14 = 0        7 - 7 = 0     0 

     19 - 14 = 5        8 - 7 = 1     5 

     21 - 14 = 7        12 - 7 = 5     35 

Add up the products:    16 + 16 + 0 + 5 + 35 = 72    
 Finally, we divide by    (n - 1) * sx * sy = (5 - 1) * 6.20 *
      3.39 = 84.07    
 The ratio is the correlation coefficient: 

   r = 72>84.07 = 0.856   

3  The same    n - 1    we used for calculating the standard deviation. 
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 A major credit card company sends an incentive to 
its best customers in hope that the customers will 
use the card more. They wonder how often they can 
offer the incentive. Will repeated offerings of the 
incentive result in repeated increased credit card use? 

To examine this question, an analyst took a random 
sample of 184 customers from their highest use seg-
ment and investigated the charges in the two months 
in which the customers had received the incentive.   

      Setup  State the objective. Identify the quan-
titative variables to examine. Report the time 
frame over which the data have been collected 
and define each variable. (State the W’s.) 

 Our objective is to investigate the association 
between the amount that a customer charges in 
the two months in which they received an incentive. 
The customers have been randomly selected from 
among the highest use segment of customers. The 
variables measured are the total credit card char-
ges (in $) in the two months of interest.

✓   Quantitative Variable Condition.  Both variables 
are quantitative. Both charges are measured in 
dollars. 

  

  Make  the scatterplot and clearly label the axes 
to identify the scale and units. 

 Because we have two quantitative variables meas-
ured on the same cases, we can make a scatterplot.   

            

 Customer Spending    GUIDED EXAMPLE 
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  JUST CHECKING 

 For the years 1992 to 2002, the quarterly stock price of the semiconductor companies Cypress and Intel have a 
correlation of 0.86. 

   1   Before drawing any conclusions from the correlation, what would you like to see? Why?  
  2   If your co-worker tracks the same prices in euros, how will this change the correlation? Will you need to know 

the exchange rate between euros and U.S. dollars to draw conclusions?  
  3   If you standardize both prices, how will this affect the correlation?  
  4   In general, if on a given day the price of Intel is relatively low, is the price of Cypress likely to be relatively low as well?  
  5   If on a given day the price of Intel shares is high, is the price of Cypress shares definitely high as well?    
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140 CHAPTER 6  •  Correlation and Linear Regression

      Conclusion  Describe the direction, form, 
and the strength of the plot, along with any 
unusual points or features. Be sure to state 
your interpretation in the proper context. 

  MEMO: 

  Re: Credit Card Spending  

 We have examined some of the data from the 
incentive program. In particular, we looked at the 
charges made in the first two months of the 
program. We noted that there was a negative 
association between charges in the second month 
and charges in the first month. The correlation 
was    20.391   , which is only moderately strong, and 
indicates substantial variation. 

 We’ve concluded that although the observed pat-
tern is negative, these data do not allow us to 
find the causes of this behaviour. It is likely that 
some customers were encouraged by the offer 
to increase their spending in the first month, but 
then returned to former spending patterns. It is 
possible that others didn’t change their behaviour 
until the second month of the program, increas-
ing their spending at that time. Without data on 
the customers’ pre-incentive spending patterns it 
would be hard to say more. 

We suggest further research, and we suggest that 
the next trial extend for a longer period of time to 
help determine whether the patterns seen here 
persist. 

    

  Check  the conditions.      ✓   Linearity Condition.   The scatterplot is 
straight enough.  

   ✓   Outlier Condition.   There are no obvious 
outliers.    

  

      Mechanics  Once the conditions are 
satisfied, calculate the correlation with 
technology. 

 The correlation is    20.391   .

The negative correlation coefficient confirms the 
impression from the scatterplot. 

  

  

    Correlation Properties 

Because correlation is so widely used as a measure of association, it’s a good idea to 
remember some of its basic properties. Here’s a useful list of facts about the cor-
relation coefficient: 

◆ The sign of a correlation coefficient gives the direction of the association.   
◆ Correlation is always between     21     and     11.    Correlation  can  be exactly equal 

to    -1.0    or    +1.0,    but watch out. These values are unusual in real data because 
they mean that all the data points fall  exactly  on a single straight line.  

  ◆    Correlation treats   x   and   y   symmetrically.  The correlation of  x  with  y  is the 
same as the correlation of  y  with  x.   

M06_SHAR4837_01_SE_C06.indd   140 9/18/14   6:24 PM



◆ Correlation has no units.  This fact can be especially important when the 
data’s units are somewhat vague to begin with (customer satisfaction, worker 
efficiency, productivity, and so on).  

◆  Correlation is not affected by changes in the centre or scale of either vari-
able.  Changing the units or baseline of either variable has no effect on the 
correlation coefficient because the correlation depends only on the  z -scores.  

  ◆    Correlation measures the strength of the   linear   association between the 
two variables.  Variables can be strongly associated but still have a small cor-
relation if the association is not linear.  

  ◆    Correlation is sensitive to unusual observations.  A single outlier can make a 
small correlation large or make a large one small.   

    How strong is strong?   Be careful when using the terms “weak,” “moderate,” or 

“strong,” because there’s no agreement on exactly what those terms mean. The same 

numerical correlation might be strong in one context and weak in another. You might 

be thrilled to discover a correlation of 0.7 between an economic index and stock 

market prices, but fi nding “only” a correlation of 0.7 between a drug treatment and 

blood pressure might be viewed as a failure by a pharmaceutical company. Using gen-

eral terms like “weak,” “moderate,” or “strong” to describe a linear association can 

be useful, but be sure to report the correlation and show a scatterplot so others can 

judge for themselves. 

 It is very diffi cult to estimate the numerical correlation by eye. See Exercises 7 and 8.   

  Correlation Tables 

 Sometimes you’ll see the correlations between each pair of variables in a data set 
arranged in a table. The rows and columns of the table name the variables, and the 
cells hold the correlations. 

 Correlation tables are compact and give a lot of summary information at a 
glance. They can be an efficient way to start to look at a large data set. The diag-
onal cells of a correlation table always show correlations of exactly 1.000, and the 
upper half of the table is symmetrically the same as the lower half (can you see 
why?), so by convention, only the lower half is shown. A table like this can be con-
venient, but be sure to check for linearity and unusual observations or the correla-
tions in the table may be misleading or meaningless. Can you be sure, looking at 
 Table   6.1   , that the variables are linearly associated? Correlation tables are often 
produced by statistical software packages. Fortunately, these same packages often 
offer simple ways to make all the scatterplots you need to look at.  4    

 You can also call a correlation table a correlation matrix if you want a more 
impressive-sounding term. 

4   A table of scatterplots arranged just like a correlation table is sometimes called a  scatterplot 
matrix,  or SPLOM, and is easily created using a statistics package. 

   
 Volume  Close 

 Interest 
Rate 

 Unemployment 
Rate 

 Volume  1.000          

 Close  0.187  1.000       

 Interest Rate  0.337  0.750  1.000    

 Unemployment Rate  20.381  20.504  20.924  1.000 

Table 6.1    A correlation table for variables measured monthly during the period 2006 
through 2012. Volume 5 number of shares of RONA traded, Close 5 closing price of RONA 
stock, Interest Rate 5 prevailing Bank of Canada prime interest rate, Unemployment 
Rate 5 in Canada, as a percent. 
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142 CHAPTER 6  •  Correlation and Linear Regression

      6.4   Lurking Variables and Causation 
An educational researcher finds a strong association between height and read-
ing ability among elementary school students in a nationwide survey. Taller 
children tend to have higher reading scores. Does that mean that students’ 
height  causes  their reading scores to go up? No matter how strong the correla-
tion is between two variables, there’s no simple way to show from observational 
data that one variable causes the other. A high correlation just increases the 
temptation to think and to say that the  x -variable  causes  the  y -variable. Just to 
make sure, let’s repeat the point again.    

No matter how strong the association, no matter how large the  r  value, no 
matter how straight the form, there is no way to conclude from a high correla-
tion  alone  that one variable causes the other.  There’s always the possibility that 
some third variable—a  lurking variable —is affecting both of the variables you 
have observed.  In the reading score example, you may have already guessed that 
the lurking variable is the age of the child. Older children tend to be taller and 
have stronger reading skills. But even when the lurking variable isn’t as obvious, 
resist the temptation to think that a high correlation implies causation. Here’s 
another example.   
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    Figure 6.4  Life Expectancy  and numbers of  Doctors per Person  in 40 countries 
shows a fairly strong, positive linear relationship with a correlation of 0.705.        

The scatterplot in Figure 6.4 shows the  Life Expectancy  (average of men and 
women, in years) for each of 40 countries of the world, plotted against the number 
of  Doctors per Person  in each country. The strong positive association    (r = 0.705)
seems to confirm our expectation that more  Doctors per Person  improves health care, 
leading to longer lifetimes and a higher  Life Expectancy . Perhaps we should send 
more doctors to developing countries to increase life expectancy. 

 If we increase the number of doctors, will the life expectancy increase? That is, 
would adding more doctors  cause  greater life expectancy? Could there be another 
explanation of the association?  Figure   6.5    shows another scatterplot.  Life Expect-
ancy  is still the response, but this time the predictor variable is not the number 
of doctors, but the number of  Televisions per Person  in each country. The positive 
association in this scatterplot looks even  stronger  than the association in the previ-
ous plot. If we wanted to calculate a correlation, we should straighten the plot first, 
but even from this plot, it’s clear that higher life expectancies are associated with 
more televisions per person. Should we conclude that increasing the number of 
televisions extends lifetimes? If so, we should send televisions instead of doctors to 
developing countries. Not only is the association with life expectancy stronger, but 
televisions are cheaper than doctors. 

some third variable—a  lurking variable —is affecting both of the variables you 
have observed.  

There’s always the possibility that 

Crystal Kirk/Shutterstock   
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The Linear Model 143

What’s wrong with this reasoning? Maybe we were a bit hasty earlier when we 
concluded that doctors  cause  greater life expectancy. Maybe there’s a lurking vari-
able here. Countries with higher standards of living have both longer life expectan-
cies  and  more doctors. Could higher living standards cause changes in the other 
variables? If so, then improving living standards might be expected to prolong 
lives, increase the number of doctors, and increase the number of televisions. From 
this example, you can see how easy it is to fall into the trap of mistakenly inferring 
causality from a correlation. For all we know, doctors (or televisions)  do  increase 
life expectancy. But we can’t tell that from data like these no matter how much 
we’d like to. Resist the temptation to conclude that  x  causes  y  from a correlation, 
no matter how obvious that conclusion seems to you.  

   6.5   The Linear Model 
 Let’s return to the relationship between RONA’s sales and home renovation 
expenditures between 2002 and 2012. In  Figure   6.1    (repeated here) we saw a 
strong, positive, linear relationship, so we can summarize its strength with a cor-
relation. For this relationship, the correlation is 0.885.             
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    Figure 6.5   Life Expectancy  and number of  Televisions per Person  shows 
a strong, positive (although clearly not linear) relationship.        
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144 CHAPTER 6  •  Correlation and Linear Regression

That’s quite strong, but the strength of the relationship is only part of the pic-
ture. RONA’s management might want to predict sales based on Statistics Canada’s 
estimate of residential renovation expenditures for the next four quarters. That’s 
a reasonable business question, but to answer it we’ll need a model for the trend. 
The correlation says that there seems to be a strong linear association between the 
variables, but it doesn’t tell us what that association is.    

Of course, we can say more. We can model the relationship with a line and 
give the equation. For RONA, we can find a linear model to describe the rela-
tionship we saw in  Figure   6.1    between RONA’s  Sales  and residential  Renovations . 
 A  linear model  is just an equation of a straight line through the data.  The points 
in the scatterplot don’t all line up, but a straight line can summarize the general 
pattern with only a few parameters. This model can help us understand how the 
variables are associated. 

  Residuals 

We know the model won’t be perfect. No matter what line we draw, it won’t go 
through many of the points. The best line might not even hit any of the points. 
Then how can it be the “best” line? We want to find the line that somehow comes 
closer  to all the points than any other line. Some of the points will be above the line 
and some below. A linear model can be written as    yn = b0 + b1x,    where  b  0  and  b  1  are 
numbers estimated from the data and    yn    (pronounced  y -hat) is the  predicted value . 
We use the  hat  to distinguish the predicted value from the observed value    y   . The 
difference between these two is called the  residual:     

   e = y - yn.    

The residual value tells us how far the model’s prediction is from the observed 
value at that point. To find the residuals, we always subtract the predicted values 
from the observed ones.    

 Our question now is how to find the right line.  

  The Line of “Best Fit” 

When we draw a line through a scatterplot, some residuals are positive, and 
some are negative. We can’t assess how well the line fits by adding up all the 
residuals—the positive and negative ones would just cancel each other out. We 
need to find the line that’s closest to all the points, and to do that, we need 
to make all the distances positive. We faced the same issue when we calculated 

a standard deviation to measure spread. And we deal 
with it the same way here: by squaring the residuals to 
make them positive. The sum of all the squared resid-
uals tells us how well the line we drew fits the data—
the smaller the sum, the better the fit. A different 
line will produce a different sum, maybe bigger, maybe 
smaller.  The  line of best fit  is the line for which the 
sum of the squared residuals is smallest—often called 
the  least squares line .  

 This line has the special property that the variation 
of the data around the model, as seen in the residuals, 
is the smallest it can be for any straight line model for 
these data. No other line has this property. Speaking 
mathematically, we say that this line minimizes the sum 
of the squared residuals. You might think that finding 
this “least squares line” would be difficult. Surprisingly, 

      NOTATION ALERT: 
 “Putting a hat on it” is standard 
Statistics notation to indicate 
that something has been pre-
dicted by a model. Whenever 
you see a hat over a variable 
name or symbol, you can 
assume it is the predicted ver-
sion of that variable or symbol. 

 A  negative  residual means 
the predicted value is too 
big—an overestimate. A 
 positive  residual shows the 
model makes an under-
estimate. These may seem 
backwards at first. 

Who Was First? 

French mathematician Adrien-Marie Legendre was the 
first to publish the “least squares” solution to the prob-
lem of fitting a line to data when the points don’t all 
fall exactly on the line. The main challenge was how to 
distribute the errors “fairly.” After considerable thought, 
he decided to minimize the sum of the squares of what 
we now call the residuals. After Legendre published his 
paper in 1805, Carl Friedrich Gauss, the German math-
ematician and astronomer, claimed he had been using 
the method since 1795 and, in fact, had used it to calcu-
late the orbit of the asteroid Ceres in 1801. Gauss later 
referred to the “least squares” solution as “ our  method” 
(principium  nostrum ), which certainly didn’t help his 
relationship with Legendre. 

A  linear model  is just an equation of a straight line through the data.  

numbers estimated from the data and yn    (pronounced y -hat) is the predicted value .
We use the  hat  to distinguish the predicted value from the observed value    t y   . The 
difference between these two is called the residual:

A linear model can be written as    yn = b0 + b1x,    where  b0 and b1 are 
n

sum of the squared residuals is smallest—often called 
the least squares line . 

 The line of best fit is the line for which the 

“Statisticians, like artists, have 
the bad habit of falling in love 
with their models.”  

  —George Box, famous statistician   

M06_SHAR4837_01_SE_C06.indd   144 9/18/14   6:24 PM



Correlation and the Line 145

it’s not, although it was an exciting mathematical discovery when Legendre pub-
lished it in 1805.    

Other criteria for “best fit” are theoretically possible. We have chosen to mini-
mize squared residuals, that is, squared vertical distances from data points to the 
line. But, mathematically, the shortest distance from a point to a line is the per-
pendicular. There is also the horizontal distance from a data point to the line. Put-
ting the vertical and horizontal distances together makes a triangle, so a creative 
criterion would be the minimum area of all the formed triangles. Of course, none 
of these other criteria work in the context of the linear model we have developed 
here.   

   6.6   Correlation and the Line 
Any straight line can be written as: 

   y = b0 + b1x.   
If we were to plot all the ( x, y ) pairs that satisfy this equation, they’d fall exactly on 
a straight line. We’ll use this form for our linear model. Of course, with real data, 
the points won’t all fall on the line. So, we write our model as    yn = b0 + b1x,    using 
yn    for the predicted values, because it’s the predicted values (not the data values) 
that fall on the line. If the model is a good one, the data values will scatter closely 
around it. 

 For the RONA sales data, the line is: 

   Sales = 12.13 + 0.117 Renovations    

 What does this mean? The  slope  0.117 says that we can expect a year in which 
residential renovation spending is 1 million dollars higher to be one in which 
RONA sales will be about 0.117 $M ($117,000) higher. Slopes are always expressed 
in  y -units per  x -units. They tell you how the response variable changes for a one 
unit step in the predictor variable. So we’d say that the slope is 0.117 million dol-
lars of  Sales  per million dollars of  Renovations . 

  The  intercept ,       12.13, is the value of the line when the  x -variable is zero.  
What does it mean here? The intercept often serves just as a starting value for our 
predictions. We don’t interpret it unless a 0 value for the predictor variable would 
really mean something under the circumstances. The RONA model is based on 
quarters in which spending on residential renovation is between 4 and 14 billion 
dollars. It’s unlikely to be appropriate if there were no such spending at all. In this 
case, we wouldn’t interpret the intercept. 

 How do we find the slope and intercept of the least squares line? The formulas 
are simple. The model is built from the summary statistics we’ve used before. We’ll 
need the correlation (to tell us the strength of the linear association), the standard 
deviations (to give us the units), and the means (to tell us where to locate the line). 

 The slope of the line is computed as: 

   b1 = r 
sy

sx
.   

We’ve already seen that the correlation tells us the sign and the strength of the 
relationship, so it should be no surprise to see that the slope inherits this sign as 
well. If the correlation is positive, the scatterplot runs from lower left to upper 
right, and the slope of the line is positive. 

Correlations don’t have units, but slopes do. How  x  and  y  are measured—what 
units they have—doesn’t affect their correlation, but does change the slope. The 
slope gets its units from the ratio of the two standard deviations. Each standard 
deviation has the units of its respective variable. So, the units of the slope are a 
ratio, too, and are always expressed in units of  y  per unit of  x . 

h

residential renovation spending is 1 million dollars higher to be one in which 
RONA sales will be about 0.117 $M ($117,000) higher. 

The  slope 0.117 says that we can expect a year in which 

The intercept ,       12.13, is the value of the line when the  x -variable is zero. 
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How do we find the intercept? If you had to pre-
dict the  y -value for a data point whose  x -value was aver-
age, what would you say? The best fit line predicts    y    for 
points whose  x -value is    x   . Putting that into our equation 
and using the slope we just found gives: 

   y = b0 + b1x   

 and we can rearrange the terms to find: 

   b0 = y - b1x   

 It’s easy to use the estimated linear model to predict 
RONA  Sales  for any amount of national spending on 
residential  Renovations . For example, in the second quar-
ter of 2012 the total was $12 268(M). To estimate RONA 
Sales , we substitute this value for  x  in the model: 

   Sales = 12.13 + 0.117 * 12 268 = 1447.5   

 Sales actually were 1417.1 ($M), so the residual of 
1417.1 2 1447.5 5 230.4 ($M) tells us how much worse 
RONA did than the model predicted. 

  Least squares lines are commonly called  regression 
lines.   Although this name is an accident of history (as we’ll soon see), “regression” 
almost always means “the linear model fit by least squares.” Clearly, regression and 
correlation are closely related. We’ll need to check the same condition for regres-
sion as we did for correlation: 

   1.    Quantitative Variables Condition   
  2.    Linearity Condition   
  3.    Outlier Condition       

 A little later in the chapter we’ll add two more. 

  Understanding Regression from Correlation 

 The slope of a regression line depends on the units of both  x  and  y . Its units are 

the units of  y  per unit of  x . The units are expressed in the slope because  b  1    =     r     
sy

sx
   . 

The correlation has no units, but each standard deviation contains the units of 
its respective variable. For our regression of RONA  Sales  on home  Renovations,

h

      JUST CHECKING 

 A scatterplot of sales per month (in thousands of dollars) vs. number of employees for all the outlets of a large com-
puter chain shows a relationship that is straight, with only moderate scatter and no outliers. The correlation between 
 Sales  and  Employees  is 0.85, and the equation of the least squares model is: 

   Sales = 9.564 + 122.74 Employees   

   6   What does the slope of 122.74 mean?  
  7   What are the units of the slope?  
  8   The outlet in Edmonton has 10 more employees than the outlet in Calgary. How much more  Sales  do you expect 

it to have?    

h

  RONA 

 Summary statistics: 
    Sales: y = 1049.15; sy = 288.4
 Improvements: x = 8833.4; sx = 2175.3
 Correlation = 0.885

So, b1 = r 
sy

sx
= (0.885) 

288.4
2175.3

= 0.117 
($M Sales per $M Improvement expenditures)   

 And 
    b0 = y - b1x = 1049.15 - (0.117)8833.4 = 15.64   

 The equation from the computer output has slope 0.117 
and intercept    12.13.    The differences are due to round-
ing error. We’ve shown the calculation using rounded 
summary statistics, but if you are doing this by hand, you 
should always keep all digits in intermediate steps.  

lines.
  Least squares lines are commonly called  regression
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the slope was millions of dollars of sales  per  million dollars of renovation 
expenditure. 

It can be useful to see what happens to the regression equation if we were to 
standardize both the predictor and response variables and regress  z y   on  z x  . For both 
these standardized variables, the standard deviation is 1 and the means are zero. That 
means that the slope is just  r , and the intercept is 0 (because both    y    and    x    are now 0). 

 This gives us the simple equation for the regression of standardized variables: 
   zny = r  zx.   

Although we don’t usually standardize variables for regression, it can be useful 
to think about what this means. Thinking in  z -scores is a good way to understand 
what the regression equation is doing. The equation says that for every standard 
deviation we deviate from the mean in  x , we predict that  y  will be  r  standard devia-
tions away from the mean in  y . 

 Let’s be more specific. For the RONA example, the correlation is 0.885. So, we 
know immediately that: 

   znSales = 0.885 zRenovations.     

   6.7   Regression to the Mean 
Suppose you were told that a new male student was about to join the class and you 
were asked to guess his height in inches. What would be your guess? A good guess 
would be the mean height of male students. Now suppose you are also told that this 
student had a grade point average (GPA) of 3.9—about 2 SDs above the mean GPA. 
Would that change your guess? Probably not. The correlation between GPA and 
height is near 0, so knowing the GPA value doesn’t tell you anything and doesn’t 
move your guess. (And the standardized regression equation,    zyn  = rzx,    tells us that 
as well, since it says that we should move 0   *    2 SDs from the mean.)    

On the other hand, if you were told that, measured in centimetres, the stu-
dent’s height was 2 SDs above the mean, you’d know his height in inches. There’s 
a perfect correlation between  Height  in inches and  Height  in centimetres    (r = 1),    so 
you know he’s 2 SDs above mean height in inches as well. 

 What if you were told that the student was 2 SDs above the mean in shoe size? 
Would you still guess that he’s of average height? You might guess that he’s taller 
than average, since there’s a positive correlation between height and shoe size. But 
would you guess that he’s 2 SDs above the mean? When there was no correlation, 
we didn’t move away from the mean at all. With a perfect correlation, we moved 
our guess the full 2 SDs. Any correlation between these extremes should lead us 
to move somewhere between 0 and 2 SDs above the mean. (To be exact, our best 
guess would be to move  r    *    2 SDs away from the mean.)   

  Notice that if  x  is 2 SDs above its mean, we won’t ever move more than 2 SDs 
away for  y , since  r  can’t be bigger than 1.0. So each predicted  y  tends to be closer to 
its mean (in standard deviations) than its corresponding  x  was.  This property of the 
linear model is called  regression to the mean.   This is why the line is called the 
 regression line . 

  More on Regression to the Mean 

 Misinterpretation of “regression to the mean” is a phenomenon that still plagues 
decision-makers in countless areas. Stephen Senn wrote, “A Victorian eccentric 
[Francis Galton] . . . made an important discovery of a phenomenon that is so triv-
ial that all should be capable of learning it and so deep that many scientists spend 
their whole career being fooled by it.” 

 The previous illustrations show that unless the correlation between X and Y 
is perfect, predictions of Y from X will always appear to be less dramatic than one 

Library of congress

Sir Francis Galton was the first to speak 
of “regression,” although others had fit 
lines to data by the same method.   

linear model is called regression to the mean.   This is why the line is called the 
regression line . 

This property of the 

Pavel L Photo and Video/Shutterstock   
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148 CHAPTER 6  •  Correlation and Linear Regression

might expect. That’s because, “A point that is 1 SD above the mean in the X-variable 
is, on average,  r  SDs above the mean in the Y-variable. Similarly, a point that is 
1 SD below the mean in X is, on average,  r  SDs below the mean in Y.” 

Suppose you missed writing the final exam in a course and wanted to try to pre-
dict what grade you might have received based on how you did on the midterm exam 
in the same course. Results from the rest of the class showed that the midterm had 
a mean of 75% and SD of 10%, while the final exam had a mean of 70%, also with 
a SD of 10%. The correlation between midterm and final exam grades was 0.75; 
that is, students who did well on the midterm generally did well on the final. Sup-
pose you performed exceedingly well on the midterm and received a grade of 95%. 
That means you were 2 SDs above the average. According to the rule of regression, 
you would be predicted to get  r  3 2 SDs above the average on the final exam, which 
would be a grade of 85% (i.e., 70% 1 (0.75 3 2 3 10%) 5 85%). That’s still a 
very good grade, but not as high, even relatively, as your midterm grade. Why not? 
Because the correlation is not perfect. There are many other explanations for, or pre-
dictors of high final grades, such as long hours of studying! 

 Here is another way to state the main idea of regression: “For each value of X, 
the regression line passes through average value of Y.” Look at the following graph. 
We know that the regression line will pass through the point of averages (x, y), which 
is right in the centre of the scatterplot. Can you visualize the slope of the regression 
line? The answer may surprise you. It is not the line that goes through the main diag-
onal or “principal axis” of the ellipse. It goes through the average Y at each X. The 
second graph shows where the regression lies.   
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Thus for X 5 7, which is 3 units above the average, the regression line predicts 
a value of 5.5 for Y, which is 1.5 units above average. That’s because the correlation 
here is only 0.5. 

 Regression to the mean is the tendency for a very high value of a random quan-
tity whose values cluster around an average, to be followed by a value closer to that 
average, and similarly for a very low value. It is a natural effect. Misinterpretations 
of this effect lead to regression fallacies, of which there are countless examples. 
Here are a few. 

   ◆ The “sophomore jinx” in professional sports: a player who has a brilliant rookie (first-
year) performance is not quite as brilliant the second year.  
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◆ The “cover of   Sports Illustrated   jinx”: an athlete who makes the cover of   Sports 
Illustrated  magazine experiences a drop in performance (because he/she only made the 
cover due to a much better-than-average performance!)  

  ◆ The sequel to a movie is rarely ever as good as the original: a really bad movie will not 
likely have a sequel, so we rarely experience a series of movies that gets better.  

◆ The “reward and punishment” child-rearing fallacy: Psychologists Amos Tversky and 
Daniel Kahneman write, “Behaviour is most likely to improve after punishment and 
deteriorate after reward. Consequently . . . one is most often rewarded for punishing others, 
and most often punished for rewarding them.” Reward a child for angelic behaviour and 
the next time the behaviour is not exemplary as the child returns to his/her average behav-
iour. Similarly, punish a child for devilish behaviour and the next time the behaviour is 
not so bad. It isn’t really because of the punishment; it is regression to the mean.  

  ◆ The effect of red-light cameras on accidents: when you put cameras in a high-accident-rate 
intersection the accident rate will decline; at the same time, when you take a camera away 
from a low-accident intersection the rate will increase!   

Regression to the mean is very often the explanation for many phenomena that 
so-called experts attribute to something real, not just chance. Don’t let yourself be 
fooled by it!       

Regression to the mean was 
the brilliant observation 
of the great Victorian era 
scientist Sir Francis Galton. 
He was also an explorer, 
geographer, weather-
forecaster, travel-writer, and 
inventor. He devised the 
fingerprint classification 
system for identification 
used to this day. He had a 
famous cousin, but it would 
be accurate to call Galton, 
“Charles Darwin’s smarter 
cousin!” We celebrated this 
giant of statistics in 2011, 
which was the 100th anni-
versary of Galton’s death 
and the 125th anniversary 
of his landmark paper that 
introduced the term “regres-
sion to mediocrity” (his term 
for regression to the mean). 

In the paper, Galton 
related the heights of sons 
to the height of their fath-
ers. He found that the slope 
of his line was less than 1. 
That is, sons of tall fathers 
were tall, but not as much 
above their average as their 
fathers had been above 
their average. Similarly, 
sons of short fathers were 
short, but generally not as 
far from their mean as their 
fathers. Galton interpreted 
the slope correctly, calling it 
“regression” (i.e., moving 
back) toward the mean 
height. The name stuck. 

Where does the equation of the line of best fit come from? To write the equa-
tion of any line, we need to know a point on the line and the slope. It’s logical 
to expect that an average  x  will correspond to an average  y , and, in fact, the 
line does pass through the point (   x   ,    y    ). (This is not hard to show as well.) 

 To think about the slope, we look once again at the  z -scores. We need 
to remember a few things. 

   1. The mean of any set of  z -scores is 0. This tells us that the line that best 
fi ts the  z -scores passes through the origin (0, 0).  

  2. The standard deviation of a set of  z -scores is 1, so the variance is also 1. 

This means that    
g (zy - zy)2

n - 1
=

g (zy - 0)2

n - 1
=

gz 2yn - 1
= 1

    a fact that 

 will be important soon.  

  3. The correlation is    r =
gzxzy

n - 1
,    also important soon. 

 Remember that our objective is to fi nd the slope of the best fi t line. 
Because it passes through the origin, the equation of the best fi t line will 
be of the form    zyn = mzx.    We want to fi nd the value for  m  that will minimize 
the sum of the squared errors. Actually we’ll divide that sum by  n  2 1 and 
minimize this mean squared error (MSE). Here goes: 

 Minimize:     MSE =
g (zy - nzy)2

n - 1
   

 Since    zyn = mzx:        MSE =
g (zy - mzx)2

n - 1
   

   MATH BOX 
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Square the binomial:     =
g (z2

y - 2mzxzy + m2z2
x)

n - 1
   

 Rewrite the summation:     =
gz2

y

n - 1
- 2m 

gzxzy

n - 1
+ m2 

gz2
x

n - 1

4. Substitute from (2) and (3):   = 1 - 2mr + m2    
This last expression is a quadratic. A parabola in the form    y =

      ax2 + bx + c     reaches its minimum at its turning point, which occurs 

when    x =
-b

2a
    . We can minimize the mean of squared errors by 

choosing    m =
- (-2r)

2(1)
= r   .   

 The slope of the best fi t line for  z -scores is the correlation,  r . This fact 
leads us immediately to two important additional results: 

 A slope with value  r  for  z -scores means that a difference of 1 standard 
deviation in    zx    corresponds to a difference of  r  standard deviations in    zyn .    
Translate that back to the original  x  and  y  values: “Over one standard devia-
tion in  x , up  r  standard deviations in    yn   .” 

 The slope of the regression line is    b =
rsy

sx
.    

 We know choosing    m = r    minimizes the sum of the squared errors 
(SSE), but how small does that sum get? Equation (4) told us that the 
mean of the squared errors is    1 - 2mr + m2.    When    m = r,       1 - 2mr + m2 =
      1 - 2r 2 + r 2 = 1 - r  

2.    This is the percentage of variability  not  explained by 
the regression line. Since    1 - r  

2    of the variability is  not  explained, the per-
centage of variability in  y  that  is  explained by  x  is  r  2 . This important fact will 
help us assess the strength of our models. 

 And there’s still another bonus. Because  r  2  is the percent of variability 
explained by our model,  r  2  is at most 100%. If    r  

2 … 1,    then    -1 … r … 1,    
proving that correlations are always between    -1    and    +1   . 

        6.8   Checking the Model 
The linear regression model is perhaps the most widely used model in all of Statis-
tics. It has everything we could want in a model: two easily estimated parameters, a 
meaningful measure of how well the model fits the data, and the ability to predict 
new values. It even provides a self-check in plots of the residuals to help us avoid 
all kinds of mistakes. Most models are useful only when specific  assumptions  are 
true. Of course, assumptions are hard—often impossible—to check. That’s why 
we  assume  them. But we should check to see whether the assumptions are  reason-
able . Fortunately, we can often check  conditions  that provide information about the 
assumptions. For the linear model, we start by checking the same ones we checked 
earlier in this chapter for using correlation. 

  Linear Regression Conditions 

◆ Quantitative Data Condition:  Linear models only make sense for quantita-
tive data. Don’t be fooled by categorical data recorded as numbers. You probably 
don’t want to predict area codes from credit card account numbers.  

Why  r  for  correlation ? 

In his original paper on 
correlation, Galton used  r  
for the “index of correla-
tion”—what we now call 
the correlation coefficient. 
He calculated it from the 
regression of  y  on  x  or of  x  
on  y  after standardizing the 
variables, just as we have 
done. It’s fairly clear from 
the text that he used  r  to 
stand for (standardized) 
regression. 
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◆ Linearity Assumption:  The regression model  assumes  that the relationship 
between the variables is, in fact, linear. If you try to model a curved relation-
ship with a straight line, you’ll usually get what you deserve. We can’t ever 
verify that the underlying relationship between two variables is truly linear, 
but an examination of the scatterplot will let you decide whether the  Linearity 
Assumption  is reasonable. The  Linearity Condition  we used for correlation 
is designed to do precisely that and is satisfied if the scatterplot looks reason-
ably straight. If the scatterplot is not straight enough, stop. You can’t use a 
linear model for just  any  two variables, even if they are related. The two vari-
ables must have a  linear  association, or the model won’t mean a thing. Some 
nonlinear relationships can be saved by re-expressing the data to make the 
scatterplot more linear.     

  ◆    Outlier Condition:  Watch out for outliers. The linearity assumption also 
requires that no points lie far enough away to distort the line of best fit. Check 
to make sure no point needs special attention. Outlying values may have large 
residuals, and squaring makes their influence that much greater. Outlying points 
can dramatically change a regression model. Unusual observations can even 
change the sign of the slope, misleading us about the direction of the underlying 
relationship between the variables.  

  ◆ Independence Assumption:  Another assumption that is usually made when 
fitting a linear regression is that the residuals are independent of each other. 
We don’t strictly need this assumption to fit the line, but to generalize from the 
data it’s a crucial assumption and one that we’ll come back to when we discuss 
inference. As with all assumptions, there’s no way to be sure that  Independence 
Assumption  is true. However we could check that the cases are a random sample 
from the population. 

We can also check displays of the regression residuals for evidence of patterns, 
trends, or clumping, any of which would suggest a failure of independence. In the 
special case when we have a time series, a common violation of the Independence 
Assumption is for the errors to be correlated with each other (autocorrelation). 
The error our model makes today may be similar to the one it made yesterday. We 
can check this violation by plotting the residuals against time (usually    x    for a time 
series) and looking for patterns. 

 When our goal is just to explore and describe the relationship, independence 
isn’t essential (and so we won’t insist that the conditions relating to it be formally 
checked). However, when we want to go beyond the data at hand and make infer-
ences for other situations (in  Chapter   14   ) this will be a crucial assumption, so it’s 
good practice to think about it even now, especially for time series.  

  ◆    Residuals:  We always check conditions with a scatterplot of the data, but we 
can learn even more after we’ve fit the regression model. There’s extra informa-
tion in the residuals that we can use to help us decide how reasonable our model 
is and how well the model fits. So, we plot the residuals and check the condi-
tions again.   

  The residuals are the part of the data that  hasn’t  been modelled. We can write 

   Data = Predicted + Residual   
or, equivalently, 

   Residual = Data - Predicted   

Or, as we showed earlier, in symbols: 

   e = y - yn.   

 A scatterplot of the residuals versus the  x -values should be a plot without pat-
terns. It shouldn’t have any interesting features—no direction, no shape. It should 

Make a Picture 

Check the scatterplot. The 
shape must be linear, or 
you can’t use regression 
for the variables in their 
current form. And watch 
out for outliers. A useful 
rule of thumb is that the 
assumptions are probably 
reasonable if the scatterplot 
has an approximate oval 
shape. That doesn’t check 
for independence but it is 
a quick check on the other 
assumptions. 

Why  e  for  residual ? 

The easy answer is that  r  is 
already taken for correla-
tion, but the truth is that  e  
stands for “error.” It’s not 
that the data point is a mis-
take but that statisticians 
often refer to variability 
not explained by a model as 
error. 
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stretch horizontally, showing no bends, and it should have no outliers. If you see 
nonlinearities, outliers, or clusters in the residuals, find out what the regression 
model missed. 

Let’s examine the residuals from our regression of RONA  Sales  on residential 
Renovations  expenditures.  5  

5   Most computer statistics packages plot the residuals as we did in  Figure   6.6   , against the 
predicted values, rather than against  x . When the slope is positive, the scatterplots are 
virtually identical except for the axes labels. When the slope is negative, the two versions 
are mirror images. Since all we care about is the patterns (or, better, lack of patterns) in 
the plot, either plot is useful. 
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    Figure 6.6   Residuals of the regression model predicting RONA  Sales  
from residential  Renovation  expenditures 2002–2012.       

The residual plot is suitably boring. The only noticeable feature is that at the 
lower end, the residuals are smaller and mostly negative. The residuals are smaller 
in the earlier years because the sales are lower in the early years so the error in the 
predictions must be smaller. The residuals are mostly negative because the speed of 
growth increased after 2003. 

This is a good time to point out a common mistake in the interpretation of 
residual plots, namely, looking too hard for patterns or unusual features. The resid-
ual plots are designed to show major departures from the assumptions. Don’t fall 
victim to over-interpreting them. 

Not only can the residuals help check the conditions, but they can also tell 
us how well the model performs. The better the model fits the data, the less the 
residuals will vary around the line. The standard deviation of the residuals,  s e  , gives 
us a measure of how much the points spread around the regression line. Of course, 
for this summary to make sense, the residuals should all share the same underlying 
spread. So we must  assume  that the standard deviation around the line is the same 
wherever we want the model to apply.     
◆ Equal Spread Condition:  This new assumption about the standard deviation 

around the line gives us a new condition, called the  Equal Spread Condition . 
The associated question to ask is does the plot have a consistent spread or does 
it fan out? We check to make sure that the spread of the residuals is about the 
same everywhere. We can check that either in the original scatterplot of  y  against 
x  or in the scatterplot of residuals (or, preferably, in both plots).  We estimate the 
 standard deviation of the residuals  in almost the way you’d expect:  

   se = A
ge2

n - 2
.    

Equal Spread Condition 

This condition requires 
that the scatter is about 
equal for all    x   -values. It’s 
often checked using a 
plot of residuals against 
predicted values. The 
underlying assumption of 
equal variance is also called 
homoscedasticity . 

 The term comes from 
the Greek words “ homos ” 
meaning “same” and 
“ skedastikos ” meaning able 
to scatter. So  homoscedasticity  
means “same scatter.” 

standard deviation of the residuals  in almost the way you’d expect:  
 We estimate the 
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We don’t need to subtract the mean of the residuals because    e = 0   . Why divide 
by    n - 2    rather than    n - 1?    We used    n - 1    for  s  when we estimated the mean. Now 
we’re estimating both a slope and an intercept. Looks like a pattern—and it is. We 
subtract one more for each parameter we estimate. 

 If we predict RONA  Sales  in the third quarter of 2008 when home  Renovation  
totalled 10 737.5 $M, the regression model gives a predicted value of 1272.7 $M. 
The actual value was about 1381.7 $M. So our residual is 1272.7 2 1381.7 5 109.0. 
The value of  s e   from the regression is 135.6, so our residual is only 109.0/135.6 5 
0.80 standard deviations away from the actual value. That’s a fairly typical size for a 
residual because it’s within 2 standard deviations.     

   6.9   Variation in the Model and  R   2  
The variation in the residuals is the key to assessing how well the model fits. Let’s 
compare the variation of the response variable with the variation of the residuals. 
Sales  has a standard deviation of 288.4 ($M). The standard deviation of the resid-
uals is only 134.0 ($M). If the correlation were 1.0 and the model predicted the 
Sales  values perfectly, the residuals would all be zero and have no variation. We 
couldn’t possibly do any better than that. 

On the other hand, if the correlation were zero, the model would simply pre-
dict 1049.2 ($M) (the mean) for all menu items. The residuals from that prediction 
would just be the observed  Sales  values minus their mean. These residuals would 
have the same variability as the original data because, as we know, just subtracting 
the mean doesn’t change the spread.    

–750
Sale (with

means subtracted)

–500

–250

250

500

0

Residuals

    Figure 6.7    Compare the variability of  Sales 
 with the variability of the residuals from the 
regression. The means have been subtracted to 
make it easier to compare spreads. The varia-
tion left in the residuals is unaccounted for by 
the model, but it’s less than the variation in the 
original data.        

How well does the regression model do? Look at the boxplots. The variation 
in the residuals is smaller than in the data, but bigger than zero. That’s nice to 
know, but how much of the variation is still left in the residuals? If you had to put a 
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number between 0% and 100% on the fraction of the variation left in the residuals, 
what would you say? 

All regression models fall somewhere between the two extremes of zero cor-
relation and perfect correlation. We’d like to gauge where our model falls. Can 
we use the correlation to do that? Well, a regression model with correlation 
-    0.5 is doing as well as one with correlation    +    0.5. They just have different dir-
ections. But if we  square  the correlation coefficient, we’ll get a value between 
0 and 1, and the direction won’t matter. The squared correlation,  r   2 , gives the 
fraction of the data’s variation accounted for by the model, and    12 r2    is the frac-
tion of the original variation left in the residuals. For the RONA  Sales  model, 
   r2 = 0.8852 = 0.783    and    1 - r2    is 0.216, so only 21.6% of the variability in  Sales
has been left in the residuals.    

 All regression analyses include this statistic, although by tradition, it is written 
with a capital letter,  R  2 , and pronounced “ R -squared.” An  R  2  of 0 means that none 
of the variance in the data is in the model; all of it is still in the residuals. It would 
be hard to imagine using that model for anything. 

 Because  R  2  is a fraction of a whole, it is often given as a percentage.  6   For the 
RONA  Sales  data,    R2    is 78.3%.  

 When interpreting a regression model, you need to report what  R  2  means. 
According to our linear model, 78.3% of the variability in RONA  Sales  is accounted 
for by variation in residential  Renovations  expenditures.    

   ◆    How can we see that  R  2  is really the fraction of variance accounted for by 
the model?  It’s a simple calculation. The variance of  Sales  is 288.4 2     =     83 175. If 
we treat the residuals as data, the variance of the residuals is 17 961.  7   As a fraction 
of the variance of  Sales , that’s 0.216 or 21.6%. That’s the fraction of the variance 
that is  not  accounted for by the model. The fraction that  is  accounted for is 100% 
-     21.6%    =     78.3%, just the value we got for  R  2 .    

  How Big Should  R   2  Be? 

 The value of  R  2  is always between 0% and 100%. But what is a “good”  R  2  value? 
The answer depends on the kind of data you are analyzing and on what you want 
to do with it. Just as with correlation, there is no value for  R  2  that automatically 
determines that the regression is “good.” Data from scientific experiments often 

Is a correlation of 0.80 
twice as strong as a cor-
relation of 0.40? Not if 
you think in terms of   R  2  . A 
correlation of 0.80 means 
an  R  2  of    0.802 = 64,   . A 
correlation of 0.40 means 
an  R  2  of    0.402 = 16,   —only 
a quarter as much of the 
variability accounted for. 
A correlation of 0.80 gives 
an  R  2   four  times as strong 
as a correlation of 0.40 and 
accounts for four times as 
much of the variability. 

Some Extreme Tales 

One major company 
developed a method to 
differentiate between pro-
teins. To do so, they had to 
distinguish between regres-
sions with  R  2  of 99.99% and 
99.98%. For this applica-
tion, 99.98% was not high 
enough. 

 The president of a 
financial services company 
reports that although his 
regressions give  R  2  below 
2%, they are highly suc-
cessful because those used 
by his competition are even 
lower. 

      JUST CHECKING 

Let’s go back to our regression of sales ($000) on number of employees again. 

   Sales = 9.564 + 122.74 Employees   
The  R  2  value is reported as 71.4%. 

9   What does the  R  2  value mean about the relationship of  Sales  and  Employees ?  
10   Is the correlation of  Sales  and  Employees  positive or negative? How do you know?  
11    If we measured the  Sales  in thousands of euros instead of thousands of dollars, would the  R  2  value change? 

How about the slope?   

h

6  By contrast, we usually give correlation coefficients as decimal values between    -1.0    and 1.0. 
    7  This isn’t quite the same as squaring    se    which we discussed previously, but it’s very close. 

, q , , g
fraction of the data’s variation accounted for by the model, and    12 r2    is the frac-y
tion of the original variation left in the residuals. 

, g
The squared correlation,  r 2 , gives the

with a capital letter,  R  2 , and pronounced “ R  -squared.” 
All regression analyses include this statistic, although by tradition, it is written 
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have  R  2  in the 80% to 90% range and even higher. Data from observational studies 
and surveys, though, often show relatively weak associations because it’s so difficult 
to measure reliable responses. An  R  2  of 30% to 50% or even lower might be taken 
as evidence of a useful regression. The standard deviation of the residuals can give 
us more information about the usefulness of the regression by telling us how much 
scatter there is around the line.     

As we’ve seen, an  R  2  of 100% is a perfect fit, with no scatter around the line. 
The  s e   would be zero. All of the variance would be accounted for by the model with 
none left in the residuals. This sounds great, but it’s too good to be true for real 
data.  8      

   6.10   Reality Check: Is the Regression Reasonable? 
Statistics don’t come out of nowhere. They are based on data. The results of a 
statistical analysis should reinforce common sense. If the results are surprising, 
then either you’ve learned something new about the world or your analysis is 
wrong. 

Whenever you perform a regression, think about the coefficients and ask 
whether they make sense. Is the slope reasonable? Does the direction of the slope 
seem right? The small effort of asking whether the regression equation is plausible 
will be repaid whenever you catch errors or avoid saying something silly or absurd 
about the data. It’s too easy to take something that comes out of a computer at face 
value and assume that it makes sense. 

Always be skeptical and ask yourself if the answer is reasonable. 

Sum of Squares 

The sum of the squared 
residuals    g (y - ny)2    is 
sometimes written as SSE 
(sum of squared errors). If 
we call    g (  y - y)2    SST 
(for total sum of squares) 
then 

   R2 = 1 -
SSE
SST

 .   

8   If you see an  R  2  of 100%, it’s a good idea to investigate what happened. You may have 
accidentally regressed two variables that measure the same thing. 

 Real estate agents know the three most import-
ant factors in determining the price of a house are 
 location, location,  and  location.  But what other factors 
help determine the price at which a house should 
be listed? Number of bathrooms? Size of the yard? 
A student amassed publicly available data on thou-
sands of homes. We’ve drawn a random sample of 

1057 homes to examine house pricing. Among the 
variables she collected were the total living area 
(in square feet), number of bathrooms, number of 
bedrooms, size of lot (in acres), and age of house 
(in years). We will investigate how well the size of 
the house, as measured by living area, can predict the 
selling price.   

Setup  State the objective of the study. 

 Identify the variables and their context. 

 We want to find out how well the living area of a 
house can predict its selling price. 

 We have two quantitative variables: the living area 
(in square feet) and the selling price ($). These data 
come from public records in 2006. 

 Home Size and Price    GUIDED EXAMPLE 

M06_SHAR4837_01_SE_C06.indd   155 9/18/14   6:25 PM



156 CHAPTER 6  •  Correlation and Linear Regression

     Model  We need to check the same condi-
tions for regression as we did for correlation. 
To do that, make a picture. Never fit a regres-
sion without looking at the scatterplot first. 

 ✓  Quantitative Variables Condition    

   

       

    Check the Linearity, Equal Spread, and Outlier 
Conditions. 

 ✓   Linearity Condition  The scatterplot shows two 
variables that appear to have a fairly strong 
positive association. The plot appears to be fairly 
linear. 

 ✓   Equal Spread Condition  The scatterplot shows 
a consistent spread across the  x -values. 

 ✓   Outlier Condition  There appear to be a few pos-
sible outliers, especially among large, relatively 
expensive houses. A few smaller houses are 
expensive for their size. We will check their influ-
ence on the model later. 

 We have two quantitative variables that appear to 
satisfy the conditions, so we will model this rela-
tionship with a regression line. 

        Mechanics  Find the equation of the regres-
sion line using a statistics package. Remember 
to write the equation of the model using 
meaningful variable names.

Once you have the model, plot the residuals 
and check the Equal Spread Condition again. 

 Our software produces the following output.  

Dependent variable is: Price
1057 total cases
R squared 5 62.43%
s 5 57930 with 1000 2 2 5 998 df
Variable  Coefficient
Intercept  6378.08
Living Area  115.13 
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                    The residual plot appears generally patternless. The 
few relatively expensive small houses are evident, 
but setting them aside and refitting the model 
did not change either the slope or intercept very 
much so we left them in. There is a slight tendency 
for cheaper houses to have less variation, but the 
spread is roughly the same throughout. 

        Conclusion  Interpret what you have found 
in the proper context. 

  MEMO:  

  Re: Report on housing prices.  

 We examined how well the size of a house could 
predict its selling price. Data were obtained from 
recent sales of 1057 homes. The model is: 

   Price 5 $6376.08 1115.13 1 Living Area   

 In other words, from a base of $6376.08, houses 
cost about $115.13 per square foot. 

 This model appears reasonable from both a statistical 
and real estate perspective. Although we know that 
size is not the only factor in pricing a house, the model 
accounts for 62.4% of the variation in selling price. 

 As a reality check, we checked with several real 
estate pricing sites ( www.realestateabc.com ,  www.
zillow.com ) and found that houses in this region 
were averaging $100 to $150 per square foot, so 
our model is plausible. 

 Of course, not all house prices are predicted well by 
the model. We computed the model without several 
of these houses, but their impact on the regression 
model was small. We believe that this is a reason-
able place to start to assess whether a house is 
priced correctly for this market. Future analysis 
might benefit by considering other factors. 

h

    ●  Don’t say “correlation” when you mean “association.”   How often have 
you heard the word “correlation”? Chances are pretty good that when you’ve 
heard the term, it’s been misused. It’s one of the most widely misused Sta-
tistics terms, and given how often Statistics are misused, that’s saying a lot. 
One of the problems is that many people use the specific term  correlation  when 
they really mean the more general term  association . Association is a deliberately 
vague term used to describe the relationship between two variables. 

 Correlation is a precise term used to describe the strength and direction of 
a linear relationship between quantitative variables.  

 WHAT CAN GO WRONG? 

(continued)
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158 CHAPTER 6  •  Correlation and Linear Regression

●  Don’t correlate categorical variables.   Be sure to check the Quantitative 
Variables Condition. It makes no sense to compute a correlation of categorical 
variables.  

●  Make sure the association is linear.   Not all associations between quantita-
tive variables are linear. Correlation can miss even a strong nonlinear associa-
tion. And linear regression models are never appropriate for relationships that 
are not linear. A company, concerned that customers might use ovens with 
imperfect temperature controls, performed a series of experiments  9   to assess the 
effect of baking temperature on the quality of brownies made from their freeze-
dried reconstituted brownies. The company wants to understand the sensitivity 
of brownie quality to variation in oven temperatures around the recommended 
baking temperature of 325°F. The lab reported a correlation of    -0.05    between 
the scores awarded by a panel of trained taste-testers and baking temperature 
and a regression slope of    -0.02,    so they told management that there is no rela-
tionship. Before printing directions on the box telling customers not to worry 
about the temperature, a savvy intern asks to see the scatterplot.  

9   Experiments designed to assess the impact of environmental variables outside the control 
of the company on the quality of the company’s products were advocated by the Japanese 
quality expert Dr. Genichi Taguchi starting in the 1980s in the United States. 
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   Figure 6.8     The relationship between brownie taste score and 
baking temperature is strong, but not linear.        

    The plot actually shows a strong association—but not a linear one. Don’t 
forget to check the Linearity Condition.  

●  Beware of outliers.   You can’t interpret a correlation coefficient or a regres-
sion model safely without a background check for unusual observations. Here’s 
an example. The relationship between IQ and shoe size among comedians 
shows a surprisingly strong positive correlation of 0.50. To check assumptions, 
we look at the scatterplot.   

100

125

150

175

7.5 22.5

IQ

Shoe Size

Figure 6.9     IQ vs. Shoe Size.        
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  From this “study,” what can we say about the relationship between the two? 
The correlation is 0.50. But who  does  that point in the upper right-hand cor-
ner belong to? The outlier is Bozo the Clown, known for his large shoes and 
widely acknowledged to be a comic “genius.” Without Bozo the correlation is 
near zero. 

 Even a single unusual observation can dominate the correlation value. 
That’s why you need to check the Unusual Observations Condition.  

●  Don’t confuse correlation with causation.   Once we have a strong correla-
tion, it’s tempting to try to explain it by imagining that the predictor variable 
has  caused  the response to change. Putting a regression line on a scatterplot 
tempts us even further. Humans are like that; we tend to see causes and effects 
in everything. Just because two variables are related does not mean that one 
 causes  the other.    

Does cancer cause smoking?    Even if the correlation of two variables is due to a causal 

relationship, the correlation itself cannot tell us what causes what. 

 Sir Ronald Aylmer Fisher (1890–1962) was one of the greatest statisticians of the 

twentieth century. Fisher testifi ed in court (paid by the tobacco companies) that a causal 

relationship might underlie the correlation of smoking and cancer: 

  “Is it possible, then, that lung cancer . . . is one of the causes of smoking ciga-

rettes? I don’t think it can be excluded . . . the pre-cancerous condition is one involv-

ing a certain amount of slight chronic infl ammation . . . 

 A slight cause of irritation . . . is commonly accompanied by pulling out a ciga-

rette, and getting a little compensation for life’s minor ills in that way.  And . . . is not 

unlikely to be associated with smoking more frequently.”  

 Ironically, the proof that smoking indeed is the cause of many cancers came from 

experiments conducted following the principles of experiment design and analysis that 

Fisher himself developed.  

 Scatterplots, correlation coefficients, and regres-
sion models  never  prove causation. This is, for example, 
partly why it took so long for the government to 
require warning labels on cigarettes. Although there 
was plenty of evidence that increased smoking was 
 associated with increased levels of lung cancer, it took 
years to provide evidence that smoking actually  causes  
lung cancer. (The tobacco companies used this to great 
advantage.)  
   ●   Watch out for lurking variables.   A scatterplot of 

the damage (in dollars) caused to a house by fire would 
show a strong correlation with the number of fire-
fighters at the scene. Surely the damage doesn’t cause 
firefighters. And firefighters actually do cause dam-
age, spraying water all around and chopping holes, but 
does that mean we shouldn’t call the fire department? 
Of course not. There is an underlying variable that 
leads to both more damage and more firefighters—the 
size of the blaze. A hidden variable that stands behind 
a relationship and determines it by simultaneously 
affecting the other two variables is called a  lurking 
variable . You can often debunk claims made about data 
by finding a lurking variable behind the scenes.  

   ●   Don’t fit a straight line to a nonlinear relation-
ship.   Linear regression is suited only to relationships 
that are, in fact, linear.  

In 2012, the prestigious  New England Journal of Medicine  
published research that found countries with higher 
chocolate consumption win more Nobel prizes. The 
also-prestigious British journal  Practical Neurology  followed 
this up with a study that showed a nearly identical link 
between milk consumption and Nobel prize success. 
Putting the two results together must mean that choco-
late milk (or milk chocolate) is the ultimate brain food! 
Both studies were, of course, tongue-in-cheek but were 
undertaken to emphasize the difference between cor-
relation and causation, and that this difference is often 
overlooked. 

 A much less serious organization, the Church of 
the Flying Spaghetti Monster (FSM) published a graph 
showing a strong negative correlation between the world 
population of pirates and average global temperatures 
over the past 200 years (see  www.venganza.org ). Accord-
ing to the FSM founder, “Global warming, earthquakes, 
hurricanes, and other natural disasters are a direct effect 
of the shrinking numbers of pirates since the 1800s.” We 
point out that in recent years the pirate population has 
begun increasing again (e.g., off the coast of Somalia), 
and global temperatures are decreasing (which is why 
the term climate change has superseded the term global 
warming). Of course, the real reason for global warming 
is the end of the Cold War! 

(continued)
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160 CHAPTER 6  •  Correlation and Linear Regression

   ●  Beware of extraordinary points.   Data values can be extraordinary or 
unusual in a regression in two ways. They can have  y -values that stand off 
from the linear pattern suggested by the bulk of the data. These are what we 
have been calling outliers; although with regression, a point can be an outlier 
by being far from the linear pattern even if it is not the largest or smallest 
 y -value. Points can also be extraordinary in their  x -values. Such points can 
exert a strong influence on the line. Both kinds of extraordinary points require 
attention.  

   ●  Don’t extrapolate far beyond the data. A linear model will often do a 
reasonable job of summarizing a relationship in the range of observed 
 x -values.   Once we have a working model for the relationship, it’s tempting to 
use it. But beware of predicting  y -values for  x -values that lie too far outside 
the range of the original data. The model may no longer hold there, so such 
extrapolations too far from the data are dangerous.  

   ●  Don’t choose a model based on  R  2  alone.   Although  R  2  measures the 
 strength  of the linear association, a high  R  2  does not demonstrate the  appro-
priateness  of the regression. A single unusual observation, or data that separate 
into two groups, can make the  R  2  seem quite large when, in fact, the linear 
regression model is simply inappropriate. Conversely, a low  R  2  value may be 
due to a single outlier. It may be that most of the data fall roughly along a 
straight line, with the exception of a single point. Always look at the scatterplot.  

   ●  Beware of the dangers of computing correlation aggregated across 
different groups.   In  Chapter   4    we discussed Simpson’s Paradox, and how 
absurd results can occur when measurements from different groups are com-
bined. The reversals that can happen with categorical data and percentages can 
also happen with quantitative data and correlation. For example, income is gen-
erally accepted to be positively correlated with education. But if a scatterplot 
were prepared using two groups of people, National Hockey League players 
and university professors, a negative correlation would be seen. NHL players 
have much higher salaries, and much lower education than professors!   
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 ETHICS IN ACTION 

An ad agency hired by a well-known manufacturer of dental 

hygiene products (electric toothbrushes, oral irrigators, etc.) 

put together a creative team to brainstorm ideas for a new ad 

campaign. Trisha Simes was chosen to lead the team as she has 

had the most experience with this client to date. At their first 

meeting, Trisha communicated to her team the client’s desire to 

differentiate themselves from their competitors by not focusing 

their message on the cosmetic benefits of good dental care. As 

they brainstormed ideas, one member of the team, Brad Jonns, 

recalled a recent CNN broadcast that reported a “correlation” 

between flossing teeth and reduced risk of heart disease. See-

ing potential in promoting the health benefits of proper dental 

care, the team agreed to pursue this idea further. At their next 

meeting several team members commented on how surprised 

they were to find so many articles, medical, scientific, and popu-

lar, that seemed to claim good dental hygiene resulted in good 

health. One member noted that he found articles that linked 

gum disease not only to heart attacks and strokes but to dia-

betes and even cancer. Although Trisha puzzled over why their 

client’s competitors had not yet capitalized on these research 

findings, her team was on a roll and had already begun to focus 

on designing the campaign around this core message. 

ETHICAL ISSUE    Correlation does not imply causation. The 
possibility of lurking variables is not explored. For example, 
it is likely that those who take better care of themselves would 
floss regularly and also have less risk of heart disease (related to 
ASA Ethical Guidelines which can be found at http://www
.amstat.org/about/ethicalguidelines.cfm).   

  ETHICAL SOLUTION    Refrain from implying cause and 
effect from correlation results.   

Jill Hathway is looking for a career change and is interested in 

starting a franchise. After spending the last 20 years working 

as a mid-level manager for a major corporation, Jill wants to 

indulge her entrepreneurial spirit and strike out on her own. 

She is considering a franchise in the health and fitness indus-

try, including  Pilates One  , for which she requested a franchise 

packet. Included in the packet information were data show-

ing how various regional demographics (age, gender, income) 

related to franchise success (revenue, profit, return on invest-

ment).   Pilates One  is a relatively new franchise with only a 

few scattered locations. Nonetheless, the company reported 

various graphs and data analysis results to help prospective 

franchisers in their decision-making process. Jill was particu-

larly interested in the graph and the regression analysis that 

related the proportion of women over the age of 40 within 

a 30-kilometre radius of a  Pilates One  location to return on 

investment for the franchise. She noticed that there was a 

positive relationship. With a little research, she discovered 

that the proportion of women over the age of 40 in her city 

was higher than for any other  Pilates On e location (attribut-

able, in part, to the large number of retirees relocating to her 

city). She then used the regression equation to project return 

on investment for a  Pilates One  located in her city and was 

very pleased with the result. With such objective data, she felt 

confident that  Pilates One  was the franchise for her. 

ETHICAL ISSUE    Pilates One is reporting analysis based on 
only a few observations. Jill is extrapolating beyond the range of 
x-values (related to ASA Ethical Guidelines which can be found 
at http://www.amstat.org/about/ethicalguidelines.cfm).   

  ETHICAL SOLUTION    Pilates One should include a dis-
claimer that the analysis was based on very few observations 
and that the equation should not be used to predict success at 
other locations or beyond the range of x-values used in the 
analysis.   

                WHAT HAVE WE LEARNED? 

 In previous chapters we learned how to listen to the story told by data from a single 
variable. Now we’ve turned our attention to the more complicated (and more inter-
esting) story we can discover in the association between two quantitative variables. 

 We’ve learned to begin our investigation by looking at a scatterplot. We’re inter-
ested in the  direction  of the association, the  form  it takes, and its  strength . 

 We’ve learned that, although not every relationship is linear, when the scatter-
plot is straight enough, the  correlation coefficient  is a useful numerical summary. 

     •   The sign of the correlation tells us the direction of the association.  
    •   The magnitude of the correlation tells us of the  strength  of a linear association. 

Strong associations have correlations near    +1    or    -1   , and very weak associa-
tions have correlations near 0.  
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162 CHAPTER 6  •  Correlation and Linear Regression

 • Correlation has no units, so shifting or scaling the data, standardizing, or even 
swapping the variables has no effect on the numerical value.   

We’ve learned that to use correlation we have to check certain conditions for the 
analysis to be valid. 

  • Before finding or talking about a correlation, we’ll always check the Linearity 
Condition.  

 • And, as always, we’ll watch out for unusual observations.   

We’ve learned not to make the mistake of assuming that a high correlation or 
strong association is evidence of a cause-and-effect relationship. Beware of lurking 
variables! 

We’ve learned that when the relationship between quantitative variables is 
linear, a linear model can help summarize that relationship and give us insights 
about it. 

  • The regression (best fit) line doesn’t pass through all the points, but it is the 
best compromise in the sense that the sum of squares of the residuals is the 
smallest possible.   

We’ve learned several things the correlation,  r , tells us about the regression: 

     • The slope of the line is based on the correlation, adjusted for the standard 
deviations of  x  and  y . We’ve learned to interpret that slope in context.  

    • For each SD that a case is away from the mean of  x,  we expect it to be  r  SDs in 
 y  away from the  y  mean.  

    •   Because  r  is always between    -1    and    +1,    each predicted  y  is fewer SDs away 
from its mean than the corresponding  x  was, a phenomenon called  regression to 
the mean .  

    •   The square of the correlation coefficient,  R  2 , gives us the fraction of the varia-
tion of the response accounted for by the regression model. The remaining 
   1 - R2    of the variation is left in the residuals.   

  Terms 

    Association    • Direction:     A  positive  direction or association means that, in general, as one 
variable increases, so does the other. When increases in one variable generally 
correspond to decreases in the other, the association is  negative .  

      • Form:    The form we care about most is linear, but you should certainly 
describe other patterns you see in scatterplots.  

      • Strength:    A scatterplot is said to show a strong association if there is little 
scatter around the underlying relationship.  

     Correlation coefficient   A numerical measure of the direction and strength of a linear association. 

     r =
gzxzy

n - 1
    

     Explanatory or independent  The variable that accounts for, explains, predicts, or is otherwise responsible
 variable ( x -variable)   for the  y -variable.  

     Intercept   The intercept,  b  0 , gives a starting value in  y -units. It’s the    yn     value when  x  is 0. 

     b0 = y - b1 x    
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    Least squares A criterion that specifies the unique line that minimizes the variance of the resid-
uals or, equivalently, the sum of the squared residuals. The resulting line is called 
the  Least squares line .  

Linear model (Line of best fit) The linear model of the form    yn = b0 + b1x    fit by least squares. Also called the 
regression line. To interpret a linear model, we need to know the variables and 
their units.  

     Lurking variable   A variable other than  x  and  y  that simultaneously affects both variables, accounting 
for the correlation between the two.  

     Outlier   A point that does not fit the overall pattern seen in the scatterplot.  

     Predicted value   The prediction for  y  found for each  x -value in the data. A predicted value,    yn    , is found by 
substituting the  x -value in the regression equation. The predicted values are the 
values on the fitted line; the points ( x ,    yn    ) lie exactly on the fitted line.  

     Regression line   The particular linear equation that satisfies the least squares criterion, often called 
the line of best fit.  

     Regression to the mean   Because the correlation is always less than 1.0 in magnitude, each predicted  y  
tends to be fewer standard deviations from its mean than its corresponding  x  is 
from its mean.  

     Residual   The difference between the actual data value and the corresponding value 
predicted by the regression model—or, more generally, predicted by any model.  

     Response or dependent  The variable that the scatterplot is meant to explain or predict.
 variable ( y -variable)    

      R  2        •   The square of the correlation between  y  and  x   
    •   The fraction of the variability of  y  accounted for by the least squares linear 

regression on  x   
    •   An overall measure of how successful the regression is in linearly relating  y  to  x     

     Scatterplot   A graph that shows the relationship between two quantitative variables measured 
on the same cases.  

     Standard deviation     s e   is found by:
 of the residuals 

     se = A
ge2

n - 2
.    

     Slope    The slope,    b1   , is given in  y -units per  x -unit. Differences of one unit in  x  are asso-
ciated with differences of  b  1  units in predicted values of  y:  

     b1 = r 
sy

sx
.      

  Skills 

            •   Recognize when interest in the pattern of a possible relationship between two 
quantitative variables suggests making a scatterplot.  
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 •  Be able to identify the roles of the variables and to place the response variable 
on the  y -axis and the explanatory variable on the  x -axis.  

    • Know the conditions for correlation and how to check them.  

    • Know that correlations are between    -1    and    +1    and that each extreme indicates 
a perfect linear association.  

    • Understand how the magnitude of the correlation reflects the strength of a 
linear association as viewed in a scatterplot.  

 • Know that the correlation has no units.  

 • Know that the correlation coefficient is not changed by changing the centre or 
scale of either variable.  

 • Understand that causation cannot be demonstrated by a scatterplot or 
correlation.  

 • Know how to identify response ( y ) and explanatory ( x ) variables in context.  

 •  Understand how a linear equation summarizes the relationship between two 
variables.  

 • Recognize when a regression should be used to summarize a linear relationship 
between two quantitative variables.  

    • Know how to judge whether the slope of a regression makes sense.  

    •  Examine a scatterplot of your data for violations of the Linearity, Equal 
Spread, and Outlier Conditions that would make it inappropriate to compute a 
regression.  

 • Understand that the least squares slope is easily affected by extreme values.  

    • Define residuals as the differences between the data values and the correspond-
ing values predicted by the line, and that the Least Squares Criterion finds the 
line that minimizes the sum of the squared residuals.    

            • Be able to make a scatterplot by hand (for a small set of data) or with 
technology.  

    • Know how to compute the correlation of two variables.  

    • Know how to read a correlation table produced by a statistics program.  

    • Know how to find the slope and intercept values of a regression.  

    • Be able to use regression to predict a value of  y  for a given  x .  

 • Know how to compute the residual for each data value and how to compute 
the standard deviation of the residuals.  

    • Be able to evaluate the Equal Spread Condition with a scatterplot of the 
residuals after computing the regression.    

            • Be able to describe the direction, form, and strength of a scatterplot.  

 • Be prepared to identify and describe points that deviate from the overall 
pattern.  

    • Be able to use correlation as part of the description of a scatterplot.  

    • Be alert to misinterpretations of correlation.  

 • Understand that finding a correlation between two variables does not indicate 
a causal relationship between them. Beware the dangers of suggesting causal 
relationships when describing correlations.  
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  •   Write a sentence explaining what a linear equation says about the relation-
ship between  y  and  x , basing it on the fact that the slope is given in  y -units per 
 x -unit.  

    •   Understand how the correlation coefficient and the regression slope are 
related. Know that  R  2  describes how much of the variation in  y  is accounted for 
by its linear relationship with  x .  

    •   Be able to describe a prediction made from a regression equation, relating the 
predicted value to the specified  x -value.      

 All statistics packages make a table of results for a regression. These tables may differ slightly from one package to another, but all are essen-
tially the same—and all include much more than we need to know for now. Every computer regression table includes a section that looks 
something like this:   

           The slope and intercept coefficient are given in a table such as this one. Usually the slope is labelled with the name of the  x -variable, and 
the intercept is labelled “Intercept” or “Constant.” So the regression equation shown here is 

    Sales 5 6.83077 1 0.97138 Shelf Space.   

h

  EXCEL 

 To make a scatterplot with the Excel Chart Wizard, 
   •   Click on the  Chart Wizard  Button in the menu bar. Excel 

opens the Chart Wizard’s Chart Type Dialog window.  

  •   Make sure the  Standard Types  tab is selected, and select 
 XY (Scatter)  from the choices offered.  

  •   Specify the  scatterplot without  lines from the choices 
offered in the Chart subtype selections. The  Next  button 
takes you to the Chart Source Data dialog.  

  •   If it is not already frontmost, click on the  Data Range  tab, and 
enter the data range in the space provided.  

  •   By convention, we always represent variables in columns. The 
Chart Wizard refers to variables as Series. Be sure the  Column  
option is selected.  

  •   Excel places the leftmost column of those you select on the 
 x -axis of the scatterplot. If the column you wish to see on the 
 x -axis is not the leftmost column in your spreadsheet, click on the 
 Series  tab and edit the specification of the individual axis series.  

  •   Click the  Next  button. The Chart Options dialog appears.  

  •   Select the  Titles  tab. Here you specify the title of the chart 
and names of the variables displayed on each axis.  

Dependent variable is: Sales
R squared = 69.0% 
s = 9.277

Variable
Intercept
Shelf Space

Coefficient
6.83077
0.971381

SE(Coeff)
2.664
0.1209

t-ratio
2.56
8.04

P-value
 0.0158
#0.0001

Standard dev
of residuals
(se): In some
packages this
is called Root
MSE. In Excel
it is misnamed
as Standard
Error.     

The “independent,” predictor, or 
  -variablex

R squared

The slope

The intercept
We'll deal with all of
these later in the book.
You may ignore them 
for now.

y
The “dependent,” response, or
   -variable

  TECHNOLOGY HELP:   Correlation and Regression 
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  •   Type the chart title in the  Chart title : edit box.  

  •   Type the  x -axis variable name in the  Value (X) Axis:  edit 
box. Note that you must name the columns correctly here. 
Naming another variable will not alter the plot, only 
mislabel it.  

  •   Type the  y -axis variable name in the  Value (Y) Axis:  edit box.  

  •   Click the  Next  button to open the chart location dialog.  

  •   Select the  As new sheet:  option button.  

  •   Click the  Finish  button.   

 Often, the resulting scatterplot will require rescaling. By default, 
Excel includes the origin in the plot even when the data are far 
from zero. You can adjust the axis scales.    To change the scale of a 
plot axis in Excel, 

   •   Double-click on the axis. The  Format Axis Dialog  appears.  

  •   If the  scale tab  is not the frontmost, select it.  

  •   Enter new minimum or new maximum values in the spaces 
provided.  You can drag the dialog box over the scatterplot as 
a straightedge to help you read the maximum and minimum 
values on the axes.  

  •   Click the  OK  button to view the rescaled scatterplot.  

  •   Follow the same steps for the  x -axis scale.   

 Compute a correlation in Excel with the  CORREL  function from 
the drop-down menu of functions. If CORREL is not on the menu, 
choose  More Functions  and find it among the statistical func-
tions in the browser. 
 In the dialog box that pops up, enter the range of cells holding one 
of the variables in the space provided. 
 Enter the range of cells for the other variable in the space provided. 
 To calculate a regression, make a scatterplot of the data. With the 
scatterplot front-most, select  Add Trendline . . .  from the  Chart  
menu. Click the  Options  tab and select  Display Equation on 
Chart.  Click  OK.   

  EXCEL 2007 

 To make a scatterplot in Excel 2007: 
   •   Select the columns of data to use in the scatterplot. You can 

select more than one column by holding down the control key 
while clicking.  

  •   In the Insert tab, click on the  Scatter  button and select the 
 Scatter with only Markers  chart from the menu.   

 To make the plot more useful for data analysis, adjust the display as 
follows: 
   •   With the chart selected, click on the  Gridlines  button in the 

Layout tab to cause the Chart Tools tab to appear.  

  •   Within Primary Horizontal Gridlines, select  None . This will 
remove the gridlines from the scatterplot.  

  •   To change the axis scaling, click on the numbers of each axis of 
the chart, and click on the  Format Selection  button in the 
Layout tab.  

  •   Select the  Fixed  option instead of the Auto option, and type 
a value more suited for the scatterplot. You can use the popup 
dialog window as a straightedge to approximate the appropri-
ate values.   

 Excel 2007 automatically places the leftmost of the two columns 
you select on the  x -axis, and the rightmost one on the  y -axis. If 
that’s not what you’d prefer for your plot, you’ll want to switch 
them. 
 To switch the X- and Y-variables: 
   •   Click the chart to access the  Chart Tools  tabs.  

  •   Click on the  Select Data  button in the Design tab.  

  •   In the popup window’s Legend Entries box, click on  Edit .  

  •   Highlight and delete everything in the Series X Values line, and 
select new data from the spreadsheet. (Note that selecting 
the column would inadvertently select the title of the column, 
which would not work well here.)  

  •   Do the same with the Series Y Values line.  

  •   Press  OK,  then press  OK  again.   

 To calculate a correlation coefficient: 
   •   Click on a blank cell in the spreadsheet.  

  •   Go to the  Formulas  tab in the Ribbon and click  More 
Functions     S      Statistical.   

  •   Choose the  CORREL  function from the drop-down menu of 
functions.  

  •   In the dialog that pops up, enter the range of one of the 
variables in the space provided.  

  •   Enter the range of the other variable in the space provided.  

  •   Click  OK.    

  Comments 

 The correlation is computed in the selected cell. Correlations com-
puted this way will update if any of the data values are changed. 
 Before you interpret a correlation coefficient, always make a 
scatterplot to check for nonlinearity and outliers. If the variables 
are not linearly related, the correlation coefficient cannot be inter-
preted.    
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      MINI CASE STUDY PROJECTS 

  Fuel Efficiency 
 With the ever-increasing price of gasoline, both drivers and auto com-
panies are motivated to raise the fuel efficiency of cars. There are some 
simple ways to increase fuel efficiency: avoid rapid acceleration, avoid 
driving over 90 kph, reduce idling, and reduce the vehicle’s weight. An 
extra 50 kilograms can reduce fuel efficiency by up to 2%. A marketing 
executive is studying the relationship between the fuel efficiency of cars 
(as measured in litres per 100 kilometres [L/100km]) and their weight 
to design a new compact car campaign. In the data set  ch06_MCSP_
Fuel_Efficiency_Canada.xlsx  you’ll find data on the variables below.  10    

      •    Model of Car  
  •    Engine Size (L)  
  •    Cylinders  
  •    MSRP (Manufacturer’s 

Suggested Retail Price in $)           Isak55/Shutterstock   

    10  Data are from the 2004 model year and were compiled from  www.Edmonds.com . 

  •    City (L/100 km)  
  •    Highway (L/100 km)  
  •    Weight (kilograms)  
  •    Type and Country 

of manufacturer   

 Describe the relationship of weight, MSRP, and engine size with fuel efficiency 
(both city and highway) in a written report. Be sure to plot the residuals.  

  Energy Use at YVR 
 In 2013, for the fourth year in a row, the Vancouver International Airport Authority (YVR) 
was named the Best Airport in North America (and 8th overall worldwide) by Skytrax 
World Airport Awards. The operation of an airport is a complex undertaking. Budget plan-
ning requires being able to forecast costs of energy to operate the airport. With a clear idea 
of needs, it may be easier to negotiate favourable contracts with energy suppliers. 

 Earlier in this Chapter, we looked at the scatterplot of energy use versus number 
of passengers. Now we examine additional factors, and their relationship with energy 
use. The data file  ch06_MCSP_Energy_Use_YVR.xlsx  has the following variables on a 
monthly basis from January 1997 to December 2010. 

   •   Date (month and year)  
  •   Energy Use (thousands of kWh 5 kilowatt hours)  
  •   MeanTemp 5 Mean monthly temperature (degrees Celsius)  
  •   TotalArea 5 Total Area of all terminals (sq. m.)  
  •   Pax_Domestic 5 Domestic passengers (000s)  
  •   Pax_US 5 U.S (Trans-border) passengers (000s)  
  •   Pax_Intl 5 International passengers (000s)  
  •   Pax_Total 5 Total passengers (000s)   

 Describe the relationships between  Energy Use  and each of  MeanTemp ,  TotalArea , 
and  Pax_Total  (i.e., three separate relationships) in a written report. Based on correlations 
and linear regression, which data provide the best prediction of  Energy Use ?  

  Cost of Living 
 The Mercer Human Resource Consulting website ( www.mercerhr.com ) lists prices of cer-
tain items in selected cities around the world. They also report an overall cost-of-living 
index for each city compared to the costs of hundreds of items in New York City. For 
example, London at 110.6 is 10.6% more expensive than New York. You’ll find the 2006 
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168 CHAPTER 6  •  Correlation and Linear Regression

data for 16 cities in the data set  ch06_MCSP_Cost_of_Living.xls . Included are the 2006 
cost of living index, cost of a luxury apartment (per month), price of a bus or subway ride, 
price of a compact disc, price of an international newspaper, price of a cup of coffee (includ-
ing service), and price of a fast-food hamburger meal. All prices are in U.S. dollars. 

Examine the relationship between the overall cost of living and the cost of each of 
these individual items. Verify the necessary conditions and describe the relationship in 
as much detail as possible. (Remember to look at direction, form, and strength.) Identify 
any unusual observations. 

Based on the correlations and linear regressions, which item would be the best pre-
dictor of overall cost in these cities? Which would be the worst? Are there any surprising 
relationships? Write a short report detailing your conclusions.  

  Canadian Banks 
The Canadian Bankers Association works on behalf of 54 domestic banks, foreign bank 
subsidiaries, and foreign bank branches operating in Canada and provides a centralized 
contact to all banks on matters relating to banking in Canada. The CBA advocates for 
effective public policies that contribute to a sound, successful banking system, and pro-
motes financial literacy to help Canadians make informed financial decisions. The CBA 
is involved in financial data collection and analysis, consumer protection efforts, fighting 
bank fraud, and developing industry consensus on issues impacting banks in Canada. 

In addition to policies on financial issues, management must make decisions on 
infrastructure—how many branches should be opened, and how many bank machines, or 
automatic teller machines (ABMs) to dispense cash, should be maintained. Each year, the 
CBA compiles data on the number of ABMs and number of Canadian branches in each 
province and in the territories for the major banks in Canada: BMO, Royal Bank, TD, 
Scotiabank, CIBC, HSBC, Laurentian, and National Bank. 

The data file  ch06_MCSP_Canadian_Banks.xlsx  has 2011 data on number of 
branches, number of ABMs, as well as the provincial population (in 000s) and the provin-
cial GDP (in $ millions). The latter two come from Statistics Canada data. 

 Prepare four scatterplots of:  Branches  against  Population  and  GDP , and  ABMs  against 
Population  and  GDP . Construct a correlation table from all four variables. Why are the 
correlation coefficients so high? Which is the better predictor of branches—population 
or GDP? Which is the better predictor of ABMs—population or GDP? Compute two 
linear regression equations, one for predicting number of branches from population, the 
other for predicting number of ABMs from population. Examine the residuals to deter-
mine which provinces are “underserved;” that is, have fewer branches and fewer ABMs than 
would be predicted from your models. Write a short report summarizing your findings.   

   1.    Association.  Suppose you were to collect data for each pair of 
variables. You want to make a scatterplot. Which variable would 
you use as the explanatory variable and which as the response 
variable? Why? What would you expect to see in the scatterplot? 
Discuss the likely direction and form. LO❶ 
   a)   Cellphone bills: number of text messages, cost.  
  b)   Automobiles: Fuel efficiency (L/100 km), sales volume (num-
ber of autos).  
  c)   For each week: Ice cream cone sales, air conditioner sales.  
  d)   Product: Price ($), demand (number sold per day).    

  2.    Association,  part   2   .  Suppose you were to collect data for each 
pair of variables. You want to make a scatterplot. Which vari-
able would you use as the explanatory variable and which as the 
response variable? Why? What would you expect to see in the 
scatterplot? Discuss the likely direction and form. LO❶ 
   a)   T- shirts at a store: price each, number sold.  
  b)   Real estate: house price, house size (square footage).  
  c)   Economics: Interest rates, number of mortgage applications.  
  d)   Employees: Salary, years of experience.    

  EXERCISES 

MyStatLab Students!  Save time, improve your grades with MyStatLab.  
The Exercises marked in red can be found on MyStatLab.   You can practice them as often as 
you want, and most feature step-by-step guided solutions to help you fi nd the right answer.  
You’ll fi nd a personalized Study Plan available to you too!  Data Sets for exercises marked  
are also available on MyStatLab for formatted technologies. 
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3.    Scatterplots.  Which of the scatterplots show: LO❶ 
   a)   Little or no association?  
  b)   A negative association?  
c)   A linear association?  
  d)   A moderately strong association?  
e)   A very strong association?   

  6.    Coffee sales.  Owners of a new coffee shop tracked sales for the 
first 20 days and displayed the data in a scatterplot (by day). LO❶   

(1) (2)

(3) (4)

4.    Scatterplots,  part   2   .  Which of the scatterplots show: LO❶ 
   a)   Little or no association?  
  b)   A negative association?  
c)   A linear association?  
  d)   A moderately strong association?  
e)   A very strong association?   

(1) (2)

(3) (4)

# 
of

 B
ro

ke
n 

P
ie

ce
s

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8

Batch Number

S
al

es
 (

$1
00

)

5

4

3

2

1

4 8 12 16
Day

             a)   Make a histogram of the daily sales since the shop has been in 
business.  
  b)   State one fact that is obvious from the scatterplot, but not 
from the histogram.  
  c)   State one fact that is obvious from the histogram, but not from 
the scatterplot.    

  7.    Matching.  Here are several scatterplots. The calculated 
correlations are    -0.923, -0.487   , 0.006, and 0.777. Which is 
which? LO❶   

               5.    Manufacturing.  A ceramics factory can fire eight large 
batches of pottery a day. Sometimes a few of the pieces break in 
the process. In order to understand the problem better, the fac-
tory records the number of broken pieces in each batch for three 
days and then creates the scatterplot shown. LO❶   
             a)   Make a histogram showing the distribution of the number of 
broken pieces in the 24 batches of pottery examined.  
  b)   Describe the distribution as shown in the histogram. What 
feature of the problem is more apparent in the histogram than in 
the scatterplot?  

(a) (b)

(c) (d)

c)   What aspect of the company’s problem is more apparent in 
the scatterplot?    
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9.    Pizza sales and price.  A linear model fit to predict weekly 
 Sales  of frozen pizza (in kilograms) from the average  Price  ($/unit) 
charged by a sample of stores in 39 recent weeks is: LO❷ 

   Sales = 141 865.53 - 24 369.49 Price   
   a)   What is the explanatory variable?  
  b)   What is the response variable?  
c)   What does the slope mean in this context?  
  d)   What does the  y -intercept mean in this context? Is it 
meaningful?  
  e)   What do you predict the sales to be if the average price 
charged was $3.50 for a pizza?  
  f)   If the sales for a price of $3.50 turned out to be 60 000 kilo-
grams, what would the residual be?    

10.    Used Saab prices.  A linear model to predict the  Price  of a 
2004 Saab 9-3 (in $) from its  Mileage  (in miles) was fit to 38 cars 
that were available during the week of January 11, 2008 (Kelly’s 
Blue Book,  www.kbb.com ). The model was: LO❷ 

   Price = 24 356.15 - 0.0151 Mileage   
   a)   What is the explanatory variable?  
  b)   What is the response variable?  
c)   What does the slope mean in this context?  
  d)   What does the  y -intercept mean in this context? Is it 
meaningful?  
  e)   What do you predict the price to be for a car with 100 000 
miles on it?  
  f)   If the price for a car with 100 000 miles on it was $24 000, 
what would the residual be?    

  11.         Football salaries.  Is there a relationship between total team 
salary and the performance of teams in the National Football 
League (NFL)? For the 2006 season, a linear model predicting 
 Wins  (out of 16 regular season games) from the total team  Salary  
($M) for the 32 teams in the league is: LO❷ 

   Wins = 1.783 + 0.062 Salary   

T

h

T

h

T

h

a)   What is the explanatory variable?  
  b)   What is the response variable?  
  c)   What does the slope mean in this context?  
  d)   What does the  y -intercept mean in this context? Is it meaningful?  
  e)   If one team spends $10 million more than another on salary, 
how many more games on average would you predict them to win?  
f)   If a team spent $50 million on salaries and won eight games, 
would they have done better or worse than predicted?  
  g)   What would the residual of the team in part f be?    

  12.        Baseball salaries.  In 2007, the Boston Red Sox won the 
World Series and spent $143 million on salaries for their players 
( fathom.info/salaryper ). Is there a relationship between salary 
and team performance in Major League Baseball? For the 2007 
season, a linear model fit to the number of  Wins  (out of 162 regu-
lar season games) from the team  Salary  ($M) for the 30 teams in 
the league is: LO❷ 

   Wins = 70.097 + 0.132 Salary   
   a)   What is the explanatory variable?  
  b)   What is the response variable?  
  c)   What does the slope mean in this context?  
  d)   What does the  y -intercept mean in this context? Is it 
meaningful?  
  e)   If one team spends $10 million more than another on salaries, 
how many more games on average would you predict them to 
win?  
  f)   If a team spent $110 million on salaries and won half (81) 
of their games, would they have done better or worse than 
predicted?  
  g)   What would the residual of the team in part f be?    

  13.        Pizza sales and price, revisited.  For the data in Exercise 9, 
the average  Sales  was 52,697 kilograms (SD 5 10,261 kilograms), 
and the correlation between  Price  and  Sales  was    = -0.547   . 

 If the  Price  in a particular week was 1 SD higher than the mean 
 Price , how much pizza would you predict was sold that week? LO❷

  14.    Used Saab prices, revisited.  The 38 cars in Exercise 10 had 
an average  Price  of $23 847    (SD = $923)   , and the correlation 
between  Price  and  Mileage  was    = -0.169   . 

 If the  Mileage  of a 2004 Saab was 1 SD below the average num-
ber of miles, what  Price  would you predict for it? LO❷  

  15.    Packaging.  A CEO announces at the annual shareholders 
meeting that the new see-through packaging for the company’s 
flagship product has been a success. In fact, he says, “There is 
a strong correlation between packaging and sales.” Criticize this 
statement on statistical grounds. LO❶  

  16.    Insurance.  Insurance companies carefully track claims hist-
ories so that they can assess risk and set rates appropriately. The 
Insurance Bureau of Canada reports that Honda Accords, Honda 
Civics, and Toyota Camrys are the cars most frequently reported 
stolen, while Ford Tauruses, Pontiac Vibes, and Buick LeSabres 
are stolen least often. Is it reasonable to say that there’s a correla-
tion between the type of car you own and the risk that it will be 
stolen? LO❶  

T

h

T

T

             8.    Matching,  part   2   .  Here are several scatterplots. The calcu-
lated correlations are 20.977, 20.021, 0.736, and 0.951. Which 
is which? LO❶   

(a) (b)

(c) (d)
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17.    Sales by region.  A sales manager for a major pharmaceut-
ical company analyzes last year’s sales data for her 96 sales rep-
resentatives, grouping them by region (1 5 East Coast U.S.; 
2 5 Mid West U.S.; 3 5 West U.S.; 4 5 South U.S.; 5 5 Canada; 
6 5 Rest of World). She plots  Sales  (in $1000) against  Region  
(1–6) and sees a strong negative correlation. LO❶   

mental Protection Agency (EPA) highway mileage for 
82 family sedans as reported by the U.S. government ( www.fuele-
conomy.gov/feg/findacar.shtml ). The car with the highest high-
way mpg and lowest carbon footprint is the Toyota Prius. LO❶   
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She fits a regression to the data and finds: 

   Sales = 1002.5 - 102.7 Region.   

 The  R  2  is 70.5%. 

 Write a few sentences interpreting this model and describing 
what she can conclude from this analysis.  

  18.    Salary by job type.  At a small company, the head of human 
resources wants to examine salary to prepare annual reviews. 
He selects 28 employees at random with job types ranging 
from    01 =     Stocking clerk to    99 = President.    He plots  Salary  ($) 
against  Job Type  and finds a strong linear relationship with a cor-
relation of 0.96. LO❶             
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             a)   The correlation is    -0.947   . Describe the association.  
  b)   Are the assumptions and conditions met for computing 
correlation?  
  c)   Using technology, find the correlation of the data when the 
Prius is not included with the others. Can you explain why it 
changes in that way?    

  20.         EPA mpg.  In 2008, the EPA revised their methods for esti-
mating the fuel efficiency (mpg) of cars—a factor that plays an 
increasingly important role in car sales. How do the new high-
way and city estimated mpg values relate to each other? Here’s a 
scatterplot for 83 family sedans as reported by the U.S. govern-
ment. These are the same cars as in Exercise 19 except that the 
Toyota Prius has been removed from the data and two other 
hybrids, the Nissan Altima and Toyota Camry, are included in 
the data (and are the cars with highest city mpg). LO❶   

T

The regression output gives: 

   Salary = 15 827.9 + 1939.1 Job Type   

 Write a few sentences interpreting this model and describing 
what he can conclude from this analysis.  

19.        Carbon footprint.  The scatterplot shows, for 2008 cars, the 
carbon footprint (tons of CO 2  per year) vs. the new Environ-

h

T

Highway mpg
24 27 30 33

35

30

25

20

15

C
ity

 m
pg

             a)   The correlation of these two variables is 0.823. Describe 
the association.  
  b)   If the two hybrids were removed from the data, would you 
expect the correlation to increase, decrease, or stay the same? 
Try it using technology. Report and discuss what you find.    

  21.         Real estate  .  Is the number of total rooms in the house 
associated with the price of a house? Here is the scatterplot of 
a random sample of homes for sale: LO❶   

T
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172 CHAPTER 6  •  Correlation and Linear Regression

a)   Is there an association?  
  b)   Check the assumptions and conditions for correlation.    

22.    WestJet.  WestJet is Canada’s second largest Canadian air 
carrier, and the ninth-largest in North America by passengers 
carried (over 17 million in 2012). Founded in 1996, WestJet is a 
public company with over 9000 employees, non-unionized, and 
not part of any airline alliance. Here are two scatterplots of data 
from 1998–2012. The first shows the growth in annual revenue 
over time. The second shows the relationship between annual 
revenue and number of passengers (called “segment guests”). 
Describe the relationships seen in the two scatterplots. Are they 
linear? Are there any unusual features or data points? LO❶     

for 180 countries as grouped by the World Bank. Each point rep-
resents one of the years from 1970 to 2007. The output of a 
regression analysis follows. LO➋   
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Dependent variable: GDP  Growth Developing Countries 
R2  5 20.81%
 s  5 1.244

 Variable Coefficient 
Intercept  3.46
GDP Growth Developed  0.433
Countries 

a)   Check the assumptions and conditions for the linear model.  
  b)   Explain the meaning of    R2    in this context.  
  c)   What are the cases in this model?    

  24.        European GDP growth.  Is economic growth in Europe 
related to growth in the United States? Here’s a scatterplot of the 
average growth in 25 European countries (in % of Gross Domes-
tic Product) vs. the growth in the United States. Each point rep-
resents one of years from 1970 to 2007. LO➋   

Dependent variable: 25 European Countries GDP Growth
R2  5 29.65%
 s  5 1.156
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23.        GDP growth.  Is economic growth in the developing world 
related to growth in the industrialized countries? Here’s a 
scatterplot of the growth (in % of Gross Domestic Product) of 
the developing countries vs. the growth of developed countries 

T
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Variable  Coefficient 
Intercept  1.330
U.S. GDP Growth  0.3616

a)   Check the assumptions and conditions for the linear model.  
  b)   Explain the meaning of  R  2  in this context.    

  25.        GDP growth  part   2   .  From the linear model fit to the data 
on GDP growth of Exercise 23. LO➋ 
   a) Write the equation of the regression line. 
  b) What is the meaning of the intercept? Does it make sense in 
this context?  
  c) Interpret the meaning of the slope. 
  d) In a year in which the developed countries grow 4%, what do 
you predict for the developing world?  
  e) In 2007, the developed countries experienced a 2.65% growth, 
while the developing countries grew at a rate of 6.09%. Is this 
more or less than you would have predicted?  
  f) What is the residual for this year? 

  26.        European GDP growth  part   2   .  From the linear model fit 
to the data on GDP growth of Exercise 24. LO➋ 
   a)   Write the equation of the regression line.  
  b)   What is the meaning of the intercept? Does it make sense in 
this context?  
  c)   Interpret the meaning of the slope.  
  d)   In a year in which the United States grows at 0%, what do you 
predict for European growth?  
  e)   In 2007, the United States experienced a 3.20% growth, while 
Europe grew at a rate of 2.16%. Is this more or less than you 
would have predicted?  
f)   What is the residual for this year?    

  27.        Attendance 2006.  American League baseball games are 
played under the designated hitter rule, meaning that weak-
hitting pitchers do not come to bat. Baseball owners believe that 
the designated hitter rule means more runs scored, which in turn 
means higher attendance. Is there evidence that more fans attend 
games if the teams score more runs? Data collected from Amer-
ican League games during the 2006 season have a correlation of 
0.667 between  Runs Scored  and the number of people at the game 
( www.mlb.com ). LO➊   
             a)   Does the scatterplot indicate that it’s appropriate to calculate a 
correlation? Explain.  

T

T

T

b)   Describe the association between attendance and runs scored.  
c)   Does this association prove that the owners are right that 
more fans will come to games if the teams score more runs?    

  28.        Second inning 2006.  Perhaps fans are just more interested 
in teams that win. The displays are based on American League 
teams for the 2006 season ( espn.go.com ). Are the teams that win 
necessarily those that score the most runs? LO➊     

 CORRELATION 

    Wins  Runs  Attend 

Wins   1.000       

  Runs   0.605  1.000    
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a)   Do winning teams generally enjoy greater attendance at their 
home games? Describe the association.  
  b)   Is attendance more strongly associated with winning or score-
ing runs? Explain.  
  c)   How strongly is scoring more runs associated with winning 
more games?    

  29.        University tuition.  The data set provided contains the yearly 
tuitions in 2012–2013 for undergraduate programs in arts and 
humanities at 66 universities and colleges that are members of the 
AUCC (Association of Universities and Colleges of Canada. These 
data were originally used in  Chapter   5   , Exercises 3 and 52.) Tuition 
fees are different for Canadian and international students. Would 
you expect to find a relationship between the tuitions charged by 
universities and colleges for each type of student? LO➋ 
   a)   Use the data provided to make a scatterplot of the tuition for 
international students against the tuition charged for Canadian 
students. Describe the relationship.  
  b)   Is the direction of the relationship what you expected?  
  c)   What is the regression equation for predicting the tuition for 
an international student from the tuition for a Canadian student 
at the same university/college?  
  d)   Is a linear model appropriate?  
  e)   How much more do universities/colleges charge on average in 
yearly tuition for international students compared to Canadian 
students according to this model?  
  f)   What is the  R  2  value for this model? Explain what it says.    

T
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30.        NHL salaries.  In Exercise 11 you examined the relationship 
between total team salary and performance of teams in the 
National Football League (NFL). Here we will examine the rela-
tionship in a different professional sports league, the National 
Hockey League (NHL). In 2005–2006 the NHL instituted a sal-
ary cap, the total amount of money that teams are permitted to 
pay their players. The purpose is to keep teams in larger markets, 
and therefore with more revenue, from signing all the top players 
to extend their advantage over smaller-market teams. The data 
set provided has each team’s total  Payroll  ($M) and number of 
 Points  (based on victories) during the regular season for the 
2011–2012 season. The cap that year was $64.3 million. LO➋ 
   a)   Use the data provided to make a scatterplot of  Points  versus 
 Payroll . Describe the relationship.  
  b)   Is the direction of the relationship what you expected?  
c)   Is a linear model appropriate?  
  d)   What is the regression equation for predicting  Points  from 
 Payroll ?  
  e)   What does the slope mean in this context?  
  f)   What does the  y -intercept mean in this context? Is it 
meaningful?  
  g)   What is the  R  2  value for this model? Explain what it says.  
  h)   If one team spends $10 million more than another on salary, 
how many more points on average would you predict them to 
get?    

  31.    Mutual funds.  As the nature of investing shifted in the 1990s 
(more day traders and faster flow of information using technol-
ogy), the relationship between mutual fund monthly perform-
ance ( Return ) in percent and money flowing ( Flow ) into mutual 
funds ($ million) shifted. Using only the values for the 1990s 
(we’ll examine later years in later chapters), answer the following 
questions. (You may assume that the assumptions and conditions 
for regression are met.) LO➋ 

The least squares linear regression is: 

   Flow = 9747 + 771 Return.   
   a)   Interpret the intercept in the linear model.  
  b)   Interpret the slope in the linear model.  
c)   What is the predicted fund  Flow  for a month that had a market 
 Return  of 0%?  
  d)   If during this month, the recorded fund  Flow  was $5 billion, 
what is the residual using this linear model? Did the model pro-
vide an underestimate or overestimate for this month?    

  32.    Online clothing purchases.  An online clothing retailer 
examined their transactional database to see if total yearly 
 Purchases  ($) were related to customers’  Incomes  ($). (You may 
assume that the assumptions and conditions for regression are 
met.) LO➋ 

 The least squares linear regression is: 

   Purchases = -31.6 + 0.012 Income.   
   a)   Interpret the intercept in the linear model.  
  b)   Interpret the slope in the linear model.  
c)   If a customer has an  Income  of $20 000, what is his predicted 
total yearly  Purchases ?  
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d)   This customer’s yearly  Purchases  were actually $100. What is the 
residual using this linear model? Did the model provide an under-
estimate or overestimate for this customer?    

  33.    Residual plots.  Tell what each of the following residual plots 
indicates about the appropriateness of the linear model that was fit 
to the data. LO➌   

a) b) c)

34.    Residual plots, again.  Tell what each of the following residual 
plots indicates about the appropriateness of the linear model that 
was fit to the data. LO➌   

a) b) c)

35.        Consumer spending.  An analyst at a large credit card bank is 
looking at the relationship between customers’ charges to the 
bank’s card in two successive months. He selects 150 customers at 
random, regresses  charges  in  March  ($) on charges in  February  ($), 
and finds an  R  2  of 79%. The intercept is $730.20, and the slope is 
0.79. After verifying all the data with the company’s CPA, he con-
cludes that the model is a useful one for predicting one month’s 
charges from the other. Examine the data and comment on his 
conclusions. LO➋  

  36.        Insurance policies.  An actuary at a mid-sized insurance com-
pany is examining the sales performance of the company’s sales 
force. She has data on the average size of the policy ($) written in 
two consecutive years by 200 salespeople. She fits a linear model 
and finds the slope to be 3.00 and the  R  2  is 99.92%. She concludes 
that the predictions for next year’s policy size will be very accurate. 
Examine the data and comment on her conclusions. LO➋  

  37.    What slope?  If you create a regression model for predicting 
the sales ($ million) from money spent on advertising the prior 
month ($ thousand), is the slope most likely to be 0.03, 300 or 
3000? Explain. LO➋  

38.    What slope,  part   2   ?  If you create a regression model for esti-
mating a student’s business school GPA (on a scale of 1–5) based 
on his math SAT (on a scale of 200–800), is the slope most likely to 
be 0.01, 1, or 10? Explain. LO➋  

  39.    Misinterpretations.  An advertising agent who created a 
regression model using amount spent on  Advertising  to predict 
annual  Sales  for a company made these two statements. Assuming 
the calculations were done correctly, explain what is wrong with 
each interpretation. LO➊ 
   a)   My  R  2  of 93% shows that this linear model is appropriate.  
  b)   If this company spends $1.5 million on advertising, then annual 
sales will be $10 million.    

40.    More misinterpretations.  An economist investigated the 
association between a country’s  Literacy Rate  and  Gross Domes-

tic Product (GDP)  and used the association to draw the following 
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conclusions. Explain why each statement is incorrect. (Assume 
that all the calculations were done properly.) LO➊ 
   a)   The  Literacy Rate  determines 64% of the  GDP  for a country.  
  b)   The slope of the line shows that an increase of 5% in  Literacy 

Rate  will produce a $1 billion improvement in  GDP.     

  41.    Business admissions.  An analyst at a business school’s 
admissions office claims to have developed a valid linear model 
predicting success (measured by starting salary ($) at time of 
graduation) from a student’s undergraduate performance (meas-
ured by GPA). Describe how you would check each of the four 
regression conditions in this context. LO➌  

  42.    School rankings.  A popular magazine annually publishes rank-
ings of business programs. The latest issue claims to have developed 
a linear model predicting the school’s ranking (with “1” being the 
highest ranked school) from its financial resources (as measured by 
size of the school’s endowment). Describe how you would apply 
each of the four regression conditions in this context. LO➌  

  43.        Used BMW prices.  A business student needs cash, so he 
decides to sell his car. The car is a valuable BMW 840 that was only 
made over the course of a few years in the late 1990s. He would like 
to sell it on his own, rather than through a dealer so he’d like to 
predict the price he’ll get for his car’s model year. LO➊ 
   a)   Make a scatterplot for the data on used BMW 840’s provided.  
  b)   Describe the association between year and price.  
  c)   Do you think a linear model is appropriate?  
  d)   Computer software says that  R  2  5 57.4%. What is the correla-
tion between year and price?  
  e)   Explain the meaning of  R  2  in this context.  
  f)   Why doesn’t this model explain 100% of the variability in the 
price of a used BMW 840?    

  44.        More used BMW prices.  Use the advertised prices for 
BMW 840s given in Exercise 43 to create a linear model for the 
relationship between a car’s  Year  and its  Price.  LO➋ 
   a)   Find the equation of the regression line.  
  b)   Explain the meaning of the slope of the line.  
  c)   Explain the meaning of the intercept of the line.  
  d)   If you want to sell a 1997 BMW 840, what price seems 
appropriate?  
  e)   You have a chance to buy one of two cars. They are about 
the same age and appear to be in equally good condition. Would 
you rather buy the one with a positive residual or the one with a 
negative residual? Explain.    

45.        Cost of living.  Mercer’s  Worldwide Cost of Living Survey City 

Rankings  determine the cost of living in the most expensive cities 
in the world as an index. The survey covers 214 cities across five 
continents and measures the comparative cost of over 200 items 
in each location, including transport, food, clothing, household 
goods, and entertainment. The cost of housing is also included 
and, as it is often the biggest expense for expatriates, it plays an 
important part in determining where cities are ranked. New York 
is used as the base city and all cities are compared against it. Cur-
rency movements are measured against the U.S. dollar. The 
scatterplot shows the ranking (1 is the most expensive) of the top 
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those same cities had in the 2011. LO➊   
             a)   Describe the association between the rankings in 2012 and 
2011.  
  b)   The  R  2  for the regression equation is 0.590. Interpret the 
value of  R  2 .  
  c)   Using the data provided, find the correlation.  
  d)   Prepare a plot of the residuals. What does it say about the 
appropriateness of the linear model?    

  46.    Lobster prices.  Over the past few decades both the demand 
for lobster and the price of lobster have continued to increase. 
The scatterplot shows this increase in the  Price  of lobster ( Price /
pound) since 1990. LO➊   
             a)   Describe the increase in the  Price  of lobster since 1990.  
  b)   The  R  2  for the regression equation is 88.5%. Interpret the 
value of  R  2 .  
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c)   Find the correlation.  
  d)   Find the linear model and examine the plot of residuals versus 
predicted values. Is the Equal Spread Condition satisfied? (Use 
time starting at 1990 so that 1990 5 0.)    

  47.    El Niño.  Concern over the weather associated with El Niño 
has increased interest in the possibility that the climate on Earth 
is getting warmer. The most common theory relates an increase 
in atmospheric levels of carbon dioxide (CO 2 ), a greenhouse gas, 
to increases in temperature. Here is a scatterplot showing the 
mean annual CO 2  concentration in the atmosphere, measured in 
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176 CHAPTER 6  •  Correlation and Linear Regression

parts per million (ppm) at the top of Mauna Loa in Hawaii, and 
the mean annual air temperature over both land and sea across 
the globe, in degrees Celsius (C). LO➋   

use effectively should be estimated by the number of FTEs 
(full-time equivalent employees) on staff. The consultant col-
lected data on the number of open beds and number of FTEs 
for 12 hospitals, and computed the means and SDs as follows:   

 Number of open beds:  Mean 5 50  SD 5 20 

 Number of FTEs:  Mean 5 140  SD 5 40 

 She computed the least squares regression equation and 
found that for a hospital with 100 FTEs, the estimated num-
ber of open beds was 32. LO➋ 
   a)   Use this information to compute the value of the correla-
tion coefficient.  
  b)   What is the regression equation she found?  
  c)   From the available data, what would you predict the num-
ber of open beds to be for a hospital with an unknown num-
ber of FTEs?  
  d)   What fraction of the variation in number of open beds is 
explained by the number of FTEs?  
  e)   Another expert consultant, this one in hospital adminis-
tration, claims that the regression was done the wrong way 
around, and that the number of FTEs required in a hospital 
should be estimated from the number of open beds in the 
hospital. What would the value of the correlation coefficient 
be if the analysis were done this way?      
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A regression predicting  Mean   Temperature  from  CO  2  produces 
the following output table (in part). 

Dependent variable: Temperature
R-squared 5 33.4%
Variable  Coefficient 
Intercept  15.3066
CO2   0.004 

a)   What is the correlation between  CO  2  and  Mean   Temperature?   
  b)   Explain the meaning of  R -squared in this context.  
  c)   Give the regression equation.  
  d)   What is the meaning of the slope in this equation?  
  e)   What is the meaning of the intercept of this equation?  
  f)   Here is a scatterplot of the residuals vs. CO 2 . Does this plot 
show evidence of the violations of any of the assumptions of the 
regression model? If so, which ones?  
  g)   CO 2  levels may reach 364 ppm in the near future. What  Mean  
 Temperature  does the model predict for that value?   

48.    Hospital beds.  An expert consultant in hospital resource 
planning states that the number of open beds that a hospital can 

       JUST CHECKING ANSWERS 

      1     We know the scores are quantitative. We should 
check to see if the  Linearity Condition  and the  Outlier 
Condition  are satisfied by looking at a scatterplot of 
the two scores.  

    2    It won’t change.  
    3    It won’t change.  
    4     They are more likely to do poorly. The positive cor-

relation means that low closing prices for Intel are 
associated with low closing prices for Cypress.  

    5     No, the general association is positive, but daily clos-
ing prices may vary.  

    6     For each additional employee, monthly sales 
increase, on average, $122 740.  

    7    Thousands of $ per employee.  
    8    $1 227 400 per month.  
    9     Differences in the number of employees account for 

about 71.4% of the variation in the monthly sales.  
  10     It’s positive. The correlation and the slope have the 

same sign.  
  11       R2   , No. Slope, Yes.      
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