General, Organic, and Biological Chemistry

Structures of Life

Fifth Edition

Karen C. Timberlake

Contributions by
Laura Frost, Ph.D.
Director, Whitaker Center for STEM Education
Professor of Chemistry
Florida Gulf Coast University

PEARSON
Brief Contents

1 Chemistry in Our Lives 1
2 Chemistry and Measurements 25
3 Matter and Energy 62
4 Atoms 101
5 Nuclear Chemistry 151
6 Ionic and Molecular Compounds 183
7 Chemical Reactions and Quantities 235
8 Gases 288
9 Solutions 324
10 Reaction Rates and Chemical Equilibrium 370
11 Acids and Bases 399
12 Introduction to Organic Chemistry: Hydrocarbons 443
13 Alcohols, Phenols, Thiols, and Ethers 488
14 Aldehydes, Ketones, and Chiral Molecules 516
15 Carbohydrates 550
16 Carboxylic Acids and Esters 580
17 Lipids 608
18 Amines and Amides 649
19 Amino Acids and Proteins 688
20 Enzymes and Vitamins 722
21 Nucleic Acids and Protein Synthesis 753
22 Metabolic Pathways for Carbohydrates 797
23 Metabolism and Energy Production 836
24 Metabolic Pathways for Lipids and Amino Acids 861
Contents

1. **Chemistry in Our Lives**
 CAREER: Forensic Scientist
 1.1 Chemistry and Chemicals 2
 1.2 Scientific Method: Thinking Like a Scientist 4
 1.3 Learning Chemistry: A Study Plan 6
 1.4 Key Math Skills for Chemistry 9
 EXPLORE YOUR WORLD Nobel Prize Winners in Chemistry 4
 CHEMISTRY LINK TO HEALTH Early Chemist: Paracelsus 5
 1.5 Writing Conversion Factors 39
 EXPLORE YOUR WORLD SI and Metric Equalities on Product Labels 40
 1.6 Problem Solving Using Unit Conversion 44
 GUIDE to Problem Solving Using Conversion Factors 44
 CHEMISTRY LINK TO HEALTH Toxicology and Risk–Benefit Assessment 47
 1.7 Density 49
 EXPLORE YOUR WORLD Sink or Float 50
 CHEMISTRY LINK TO HEALTH Bone Density 51
 GUIDE to Using Density 51
 CLINICAL APPLICATIONS 29, 32, 44, 48, 53, 59
 CLINICAL UPDATE Greg’s Follow-Up Visit with His Doctor 53
 Concept Map 54
 Chapter Review 54
 Key Terms 55
 Key Math Skill 56
 Core Chemistry Skills 56
 Understanding the Concepts 57
 Additional Questions and Problems 58
 Challenge Questions 59
 Answers 60

2. **Chemistry and Measurements**
 CAREER: Registered Nurse 25
 2.1 Units of Measurement 26
 EXPLORE YOUR WORLD Units Listed on Labels 29
 2.2 Measured Numbers and Significant Figures 30
 2.3 Significant Figures in Calculations 32
 2.4 Prefixes and Equalities 36
 EXPLORE YOUR WORLD Bone Density 51
 CHEMISTRY LINK TO HEALTH Bone Density 51
 GUIDE to Calculating Temperature 71
 CHEMISTRY LINK TO HEALTH Variation in Body Temperature 72
 3.4 Energy 73

3. **Matter and Energy**
 CAREER: Dietitian 62
 3.1 Classification of Matter 63
 CHEMISTRY LINK TO HEALTH Breathing Mixtures 66
 3.2 States and Properties of Matter 67
 3.3 Temperature 69
 GUIDE to Calculating Temperature 71
 CHEMISTRY LINK TO HEALTH Variation in Body Temperature 72
 3.4 Energy 73

Key Terms
Key Math Skills
Understanding the Concepts
Additional Questions and Problems
Challenge Questions
Answers
4 Atoms 101

CHEMISTRY LINK TO THE ENVIRONMENT Carbon Dioxide and Climate Change 75

3.5 Energy and Nutrition 76
GUIDE to Calculating the Energy from a Food 78
EXPLORE YOUR WORLD Counting Calories 78
CHEMISTRY LINK TO HEALTH Losing and Gaining Weight 78

3.6 Specific Heat 80
GUIDE to Calculations Using Specific Heat 81

3.7 Changes of State 81
GUIDE to Using a Heat Conversion Factor 83
CHEMISTRY LINK TO HEALTH Steam Burns 86
CLINICAL APPLICATIONS 73, 79, 90, 95, 96
CLINICAL UPDATE A Diet and Exercise Program for Charles 90

Concept Map 91
Chapter Review 91
Key Terms 92
Core Chemistry Skills 93
Understanding the Concepts 94
Additional Questions and Problems 95
Challenge Questions 97
Answers 97
Combining Ideas from Chapters 1 to 3 99
Answers 100

CHEMISTRY LINK TO THE ENVIRONMENT Energy-Saving Fluorescent Bulbs 123

4.7 Electron Configurations 127
GUIDE to Drawing Orbital Diagrams 129
GUIDE to Writing Electron Configurations Using Sublevel Blocks 132

4.8 Trends in Periodic Properties 135
CLINICAL APPLICATIONS 104, 110, 117, 141
CLINICAL UPDATE Improving Crop Production 141

Concept Map 142
Chapter Review 142
Key Terms 144
Core Chemistry Skills 145
Understanding the Concepts 146
Additional Questions and Problems 147
Challenge Questions 148
Answers 149

5 Nuclear Chemistry 151

CAREER: Nuclear Medicine Technologist 151

5.1 Natural Radioactivity 152

5.2 Nuclear Reactions 156
GUIDE to Completing a Nuclear Equation 157
CHEMISTRY LINK TO HEALTH Radon in Our Homes 157

5.3 Radiation Measurement 162
CHEMISTRY LINK TO HEALTH Radiation and Food 163

5.4 Half-Life of a Radioisotope 165
GUIDE to Using Half-Lives 166
CHEMISTRY LINK TO THE ENVIRONMENT Dating Ancient Objects 167

5.5 Medical Applications Using Radioactivity 169
CHEMISTRY LINK TO HEALTH Brachytherapy 171

5.6 Nuclear Fission and Fusion 172
CHEMISTRY LINK TO THE ENVIRONMENT Nuclear Power Plants 175
CLINICAL APPLICATIONS 155, 165, 169, 172, 176, 180, 181
CLINICAL UPDATE Cardiac Imaging Using a Radioisotope 176

Concept Map 176
Chapter Review 177
Key Terms 177
Ionic and Molecular Compounds

CAREER: Pharmacy Technician 183

6.1 Ions: Transfer of Electrons 184

CHEMISTRY LINK TO HEALTH Some Important Ions in the Body 188

6.2 Writing Formulas for Ionic Compounds 189

6.3 Naming and Writing Ionic Formulas 192

GUIDE to Naming Ionic Compounds with Metals that Form a Single Ion 192

GUIDE to Naming Ionic Compounds with Variable Charge Metals 194

GUIDE to Writing Formulas from the Name of an Ionic Compound 195

6.4 Polyatomic Ions 196

GUIDE to Writing Formulas with Polyatomic Ions 198

GUIDE to Naming Ionic Compounds with Polyatomic Ions 199

6.5 Molecular Compounds: Sharing Electrons 200

GUIDE to Naming Molecular Compounds 201

GUIDE to Writing Formulas for Molecular Compounds 202

6.6 Lewis Structures for Molecules and Polyatomic Ions 204

GUIDE to Drawing Lewis Structures 206

6.7 Electronegativity and Bond Polarity 209

6.8 Shapes and Polarity of Molecules 212

GUIDE to Predicting Shape (VSEPR Theory) 215

GUIDE to Determining the Polarity of a Molecule 217

6.9 Attractive Forces in Compounds 218

CHEMISTRY LINK TO HEALTH Attractive Forces in Biological Compounds 220

CLINICAL APPLICATIONS 189, 196, 200, 204, 222

CLINICAL UPDATE Compounds at the Pharmacy 222

Concept Map 223

Chapter Review 223

Key Terms 225

Core Chemistry Skills 225

Chemical Reactions and Quantities

CAREER: Dental Hygienist 235

7.1 Equations for Chemical Reactions 236

GUIDE to Balancing a Chemical Equation 240

7.2 Types of Reactions 243

CHEMISTRY LINK TO HEALTH Incomplete Combustion: Toxicity of Carbon Monoxide 247

7.3 Oxidation–Reduction Reactions 248

EXPLORE YOUR WORLD Oxidation of Fruits and Vegetables 250

7.4 The Mole 251

GUIDE to Calculating the Atoms or Molecules of a Substance 253

GUIDE to Calculating the Moles of an Element in a Compound 254

7.5 Molar Mass and Calculations 255

GUIDE to Calculating Molar Mass 256

EXPLORE YOUR WORLD Calculating Moles in the Kitchen 256

GUIDE to Calculating the Moles (or Grams) of a Substance from Grams (or Moles) 258

7.6 Mole Relationships in Chemical Equations 260

GUIDE to Calculating the Quantities of Reactants and Products in a Chemical Reaction 262

7.7 Mass Calculations for Reactions 263

7.8 Limiting Reactants and Percent Yield 265

GUIDE to Calculating the Moles of Product from a Limiting Reactant 266

GUIDE to Calculating the Grams of Product from a Limiting Reactant 267

GUIDE to Calculations for Percent Yield 269

7.9 Energy in Chemical Reactions 271

GUIDE to Calculating Using the Heat of Reaction 273

CHEMISTRY LINK TO HEALTH Cold Packs and Hot Packs 273

CLINICAL APPLICATIONS 243, 251, 255, 259, 265, 274, 275, 284

CLINICAL UPDATE Whitening of Tooth Enamel 275
8 Gases 288

CAREER: Respiratory Therapist 288

8.1 Properties of Gases 289
 EXPLORE YOUR WORLD Forming a Gas 291
 CHEMISTRY LINK TO HEALTH Measuring Blood Pressure 294

8.2 Pressure and Volume (Boyle’s Law) 295
 GUIDE to Using the Gas Laws 296
 CHEMISTRY LINK TO HEALTH Pressure-Volume Relationship in Breathing 296

8.3 Temperature and Volume (Charles’s Law) 298

8.4 Temperature and Pressure (Gay-Lussac’s Law) 300

8.5 The Combined Gas Law 303

8.6 Volume and Moles (Avogadro’s Law) 304
 GUIDE to Using Molar Volume 307

8.7 The Ideal Gas Law 308
 GUIDE to Using the Ideal Gas Law 309
 CHEMISTRY LINK TO HEALTH Hyperbaric Chambers 310
 GUIDE to Using the Ideal Gas Law for Reactions 311

8.8 Partial Pressures (Dalton’s Law) 312
 GUIDE to Calculating Partial Pressure 313
 CHEMISTRY LINK TO HEALTH Blood Gases 314
 CLINICAL APPLICATIONS 294, 297, 302, 312, 314, 315, 320
 CLINICAL UPDATE Exercise-Induced Asthma 315

Concept Map 315
Chapter Review 316
Key Terms 317
Core Chemistry Skills 317
Understanding the Concepts 318
Additional Questions and Problems 319
Challenge Questions 320
Answers 320
Combining Ideas from Chapters 7 and 8 322
Answers 323
10 Reaction Rates and Chemical Equilibrium 370

CAREER: Neonatal Nurse 370

10.1 Rates of Reactions 372
CHEMISTRY LINK TO THE ENVIRONMENT Catalytic Converters 375

10.2 Chemical Equilibrium 377

10.3 Equilibrium Constants 380
GUIDE to Writing the Equilibrium Constant Expression 381
GUIDE to Calculating the K_c Value 382

10.4 Using Equilibrium Constants 383
GUIDE to Using the Equilibrium Constant 385

10.5 Changing Equilibrium Conditions: Le Châtelier’s Principle 387
CHEMISTRY LINK TO HEALTH Oxygen–Hemoglobin Equilibrium and Hypoxia 389
CHEMISTRY LINK TO HEALTH Homeostasis: Regulation of Body Temperature 392
CLINICAL APPLICATIONS 393
CLINICAL UPDATE An Iron-Rich Diet for Children’s Anemia 393

Concept Map 394
Chapter Review 394
Key Terms 395
Core Chemistry Skills 395
Understanding the Concepts 396
Additional Questions and Problems 396
Challenge Questions 397
Answers 398

11 Acids and Bases 399

CAREER: Clinical Laboratory Technician 399

11.1 Acids and Bases 400

11.2 Bronsted–Lowry Acids and Bases 403
GUIDE to Writing Conjugate Acid–Base Pairs 405

11.3 Strengths of Acids and Bases 406

11.4 Dissociation Constants for Acids and Bases 411

11.5 Dissociation of Water 413
GUIDE to Calculating $[H_3O^+]$ and $[OH^-]$ in Aqueous Solutions 415

11.6 The pH Scale 416
GUIDE to Calculating pH of an Aqueous Solution 419
GUIDE to Calculating $[H_3O^+]$ from pH 421
CHEMISTRY LINK TO HEALTH Stomach Acid, HCl 422

11.7 Reactions of Acids and Bases 423
GUIDE to Balancing an Equation for Neutralization 424
CHEMISTRY LINK TO HEALTH Antacids 424

11.8 Acid–Base Titration 425
GUIDE to Calculations for an Acid–Base Titration 426

11.9 Buffers 427
GUIDE to Calculating pH of a Buffer 429
CHEMISTRY LINK TO HEALTH Buffers in the Blood Plasma 430
CLINICAL APPLICATIONS 416, 422, 432, 437, 438, 441
CLINICAL UPDATE Acid Reflux Disease 432

Concept Map 433
Chapter Review 433
Key Terms 434
Key Math Skills 435
Core Chemistry Skills 435
Understanding the Concepts 436
Additional Questions and Problems 437
Challenge Questions 438
Answers 439
Combining Ideas from Chapters 9 to 11 441
Answers 442

12 Introduction to Organic Chemistry: Hydrocarbons 443

CAREER: Firefighter/Emergency Medical Technician 443

12.1 Organic Compounds 444

12.2 Alkanes 447
GUIDE to Drawing Structural Formulas for Alkanes 448

12.3 Alkanes with Substituents 451
GUIDE to Naming Alkanes with Substituents 454
GUIDE to Drawing Structural Formulas for Alkanes with Substituents 455
12.4 Properties of Alkanes 457
12.5 Alkenes and Alkynes 460
 EXPLORE YOUR WORLD Ripening Fruit 461
 GUIDE to Naming Alkenes and Alkynes 461
 CHEMISTRY LINK TO THE ENVIRONMENT Fragrant Alkenes 463
12.6 Cis–Trans Isomers 464
 EXPLORE YOUR WORLD Modeling Cis–Trans Isomers 465
 CHEMISTRY LINK TO THE ENVIRONMENT Pheromones in Insect Communication 466
 CHEMISTRY LINK TO HEALTH Cis-Trans Isomers for Night Vision 467
12.7 Addition Reactions for Alkenes 468
 EXPLORE YOUR WORLD Unsaturation in Fats and Oils 468
 CHEMISTRY LINK TO HEALTH Hydrogenation of Unsaturated Fats 469
 EXPLORE YOUR WORLD Polymers and Recycling Plastics 472
12.8 Aromatic Compounds 473
 CHEMISTRY LINK TO HEALTH Some Common Aromatic Compounds in Nature and Medicine 475
 CHEMISTRY LINK TO HEALTH Polycyclic Aromatic Hydrocarbons (PAHs) 477
 CLINICAL APPLICATIONS 477
 CLINICAL UPDATE Diane's Treatment in the Burn Unit 477

Concept Map 478
Chapter Review 479
Summary of Naming 480
Summary of Reactions 480
Key Terms 481
Core Chemistry Skills 481
Understanding the Concepts 482
Additional Questions and Problems 483
Challenge Questions 485
Answers 485

13 Alcohols, Phenols, Thiols, and Ethers 488

CAREER: Nurse Anesthetist 488
13.1 Alcohols, Phenols, and Thiols 489
 GUIDE to Naming Alcohols and Phenols 491
 EXPLORE YOUR WORLD Alcohols in Household Products 491
 CHEMISTRY LINK TO HEALTH Some Important Alcohols and Phenols 492
13.2 Ethers 495
 GUIDE to Writing IUPAC Names for Ethers 496
 CHEMISTRY LINK TO HEALTH Ethers as Anesthetics 496
13.3 Physical Properties of Alcohols, Phenols, and Ethers 497
 CHEMISTRY LINK TO HEALTH Hand Sanitizers and Ethanol 500
13.4 Reactions of Alcohols and Thiols 501
 CHEMISTRY LINK TO HEALTH Methanol Poisoning 503
 CHEMISTRY LINK TO HEALTH Oxidation of Alcohol in the Body 505
 CLINICAL APPLICATIONS 507, 512
 CLINICAL UPDATE Janet's New Diet Plan 507
 Concept Map 508
 Chapter Review 508
 Summary of Naming 509
 Summary of Reactions 509
 Key Terms 509
 Core Chemistry Skills 510
 Understanding the Concepts 510
 Additional Questions and Problems 511
 Challenge Questions 513
 Answers 513

14 Aldehydes, Ketones, and Chiral Molecules 516

CAREER: Dermatology Nurse 516
14.1 Aldehydes and Ketones 517
 GUIDE to Naming Aldehydes 518
 GUIDE to Naming Ketones 520
 CHEMISTRY LINK TO HEALTH Some Important Aldehydes and Ketones 521
14.2 Physical Properties of Aldehydes and Ketones 523
14.3 Oxidation and Reduction of Aldehydes and Ketones 525
14.4 Hemiacetals and Acetals 527
14.5 Chiral Molecules 531
 EXPLORE YOUR WORLD Using Gumdrops and Toothpicks to Model Chiral Objects 533
17 Lipids 608

CAREER: Clinical Lipid Specialist 608
17.1 Lipids 609
17.2 Fatty Acids 610
EXPLORE YOUR WORLDSolubility of Fats and Oils 611
CHEMISTRY LINK TO HEALTH Omega-3 Fatty Acids in Fish Oils 615
17.3 Waxes and Triacylglycerols 617
GUIDE to Drawing Triacylglycerols 618
17.4 Chemical Properties of Triacylglycerols 621
CHEMISTRY LINK TO HEALTH Converting Unsaturated Fats to Saturated Fats: Hydrogenation and Interesterification 622
EXPLORE YOUR WORLDTypes of Fats 624
CHEMISTRY LINK TO THE ENVIRONMENTBiodiesel as an Alternative Fuel 625
17.5 Phospholipids 627
CHEMISTRY LINK TO HEALTH Infant Respiratory Distress Syndrome (IRDS) 630
17.6 Steroids: Cholesterol, Bile Salts, and Steroid Hormones 632
CHEMISTRY LINK TO HEALTH Anabolic Steroids 636
17.7 Cell Membranes 638
CLINICAL APPLICATIONS610, 616, 620, 631, 637, 640, 644
CLINICAL UPDATERebecca’s Program to Lower Cholesterol in Familial Hypercholesterolemia (FH) 640
Concept Map 641
Chapter Review 641
Summary of Reactions 642
Key Terms 643
Core Chemistry Skills 643
Understanding the Concepts 644
Additional Questions and Problems 644
Challenge Questions 645
Answers 646

18 Amines and Amides 649

CAREER: Environmental Health Practitioner 649
18.1 Amines 650
GUIDE to IUPAC Naming of Amines 651
GUIDE to Naming Compounds with Two Functional Groups 653

18.2 Properties of Amines 656
18.3 Heterocyclic Amines 661
CHEMISTRY LINK TO HEALTHSynthesizing Drugs 663
18.4 Neurotransmitters 664
18.5 Amides 671
GUIDE to Naming Amides 673
CHEMISTRY LINK TO HEALTHAmides in Health and Medicine 674
18.6 Hydrolysis of Amides 676
CLINICAL APPLICATIONS661, 664, 670, 678, 681, 683
CLINICAL UPDATETesting Soil and Water Samples for Chemicals 678
Concept Map 678
Chapter Review 679
Summary of Naming 679
Summary of Reactions 680
Key Terms 680
Core Chemistry Skills 681
Understanding the Concepts 681
Additional Questions and Problems 682
Challenge Questions 683
Answers 684
Combining Ideas from Chapters 15 to 18 686

19 Amino Acids and Proteins 688

CAREER: Radiology Technician 688
19.1 Proteins and Amino Acids 689
CHEMISTRY LINK TO HEALTHEssential Amino Acids 693
19.2 Amino Acids as Acids and Bases 694
19.3 Formation of Peptides 697
GUIDE to Drawing a Peptide 698
CHEMISTRY LINK TO HEALTHPolypeptides in the Body 699
19.4 Protein Structure: Primary and Secondary Levels 701
CHEMISTRY LINK TO HEALTHProtein Sequencing 702
CHEMISTRY LINK TO HEALTHProtein Secondary Structures and Alzheimer’s Disease 705
19.5 Protein Structure: Tertiary and Quaternary Levels 706
21 Nucleic Acids and Protein Synthesis 753

20 Enzymes and Vitamins 722

22 Metabolic Pathways for Carbohydrates 797
22.2 Important Coenzymes in Metabolic Pathways 804
22.3 Digestion of Carbohydrates 808
22.4 Glycolysis: Oxidation of Glucose 810
22.5 Pathways for Pyruvate 816
22.6 Glycogen Synthesis and Degradation 819
 CHEMISTRY LINK TO HEALTH Glycogen Storage Diseases (GSDs) 822
22.7 Gluconeogenesis: Glucose Synthesis 824
 CLINICAL APPLICATIONS 804, 816, 819, 824, 829, 833
 CLINICAL UPDATE Philip’s Diet for von Gierke’s Disease 829
Concept Map 829
Chapter Review 830
Summary of Key Reactions 831
 Key Terms 831
 Core Chemistry Skills 832
 Understanding the Concepts 832
 Additional Questions and Problems 833
 Challenge Questions 834
 Answers 834

23 Metabolism and Energy Production 836
 CAREER: Exercise Physiologist 836
23.1 The Citric Acid Cycle 837
23.2 Electron Transport and ATP 844
 CHEMISTRY LINK TO HEALTH Toxins: Inhibitors of Electron Transport 847
 CHEMISTRY LINK TO HEALTH Uncouplers of ATP Synthase 849
23.3 ATP Energy from Glucose 851
 CHEMISTRY LINK TO HEALTH Efficiency of ATP Production 854
 CLINICAL APPLICATIONS 844, 850, 855, 859
 CLINICAL UPDATE Improving Natalie’s Overall Fitness 855
Concept Map 855
Chapter Review 856
Summary of Key Reactions 856
 Key Terms 856
 Core Chemistry Skills 857
 Understanding the Concepts 857
 Additional Questions and Problems 858
 Challenge Questions 859
 Answers to Selected Questions and Problems 859

24 Metabolic Pathways for Lipids and Amino Acids 861
 CAREER: Public Health Nurse (PHN) 861
24.1 Digestion of Triacylglycerols 862
 EXPLORE YOUR WORLD Digestion of Fats 864
24.2 Oxidation of Fatty Acids 865
24.3 ATP and Fatty Acid Oxidation 870
 CHEMISTRY LINK TO HEALTH Stored Fat and Obesity 871
 EXPLORE YOUR WORLD Fat Storage and Blubber 872
24.4 Ketogenesis and Ketone Bodies 873
 CHEMISTRY LINK TO HEALTH Diabetes and Ketone Bodies 875
24.5 Fatty Acid Synthesis 876
24.6 Degradation of Proteins and Amino Acids 880
24.7 Urea Cycle 884
24.8 Fates of the Carbon Atoms from Amino Acids 886
24.9 Synthesis of Amino Acids 888
 CHEMISTRY LINK TO HEALTH Phenylketonuria (PKU) 890
 CLINICAL APPLICATIONS 865, 873, 875, 880, 886, 892, 896
 CLINICAL UPDATE Treatment of Luke’s Hepatitis C 892
Concept Map 893
Chapter Review 893
Summary of Key Reactions 894
 Key Terms 895
 Core Chemistry Skills 895
 Understanding the Concepts 896
 Additional Questions and Problems 896
 Challenge Questions 897
 Answers 898
 Combining Ideas from Chapters 22 to 24 900
 Answers 900

Credits C-1
Glossary/Index I-1
KAREN TIMBERLAKE is Professor Emerita of chemistry at Los Angeles Valley College, where she taught chemistry for allied health and preparatory chemistry for 36 years. She received her bachelor’s degree in chemistry from the University of Washington and her master’s degree in biochemistry from the University of California at Los Angeles.

Professor Timberlake has been writing chemistry textbooks for 40 years. During that time, her name has become associated with the strategic use of pedagogical tools that promote student success in chemistry and the application of chemistry to real-life situations. More than one million students have learned chemistry using texts, laboratory manuals, and study guides written by Karen Timberlake. In addition to General, Organic, and Biological Chemistry: Structures of Life, fifth edition, she is also the author of Chemistry: An Introduction to General, Organic, and Biological Chemistry, twelfth edition, with the accompanying Study Guide and Selected Solutions Manual, and Basic Chemistry, fourth edition, with the accompanying Study Guide and Selected Solutions Manual, Laboratory Manual, and Essentials Laboratory Manual.

Professor Timberlake belongs to numerous scientific and educational organizations including the American Chemical Society (ACS) and the National Science Teachers Association (NSTA). She has been the Western Regional Winner of Excellence in College Chemistry Teaching Award given by the Chemical Manufacturers Association. She received the McGuffey Award in Physical Sciences from the Textbook Authors Association for her textbook Chemistry: An Introduction to General, Organic, and Biological Chemistry, eighth edition, which has demonstrated her excellence over time. She received the “Texty” Textbook Excellence Award from the Textbook Authors Association for the first edition of Basic Chemistry. She has participated in education grants for science teaching including the Los Angeles Collaborative for Teaching Excellence (LACTE) and a Title III grant at her college. She speaks at conferences and educational meetings on the use of student-centered teaching methods in chemistry to promote the learning success of students.

When Professor Timberlake is not writing textbooks, she and her husband relax by playing tennis, ballroom dancing, traveling, trying new restaurants, cooking, and taking care of their grandchildren, Daniel and Emily.

DEDICATION

I dedicate this book to

• My husband, Bill, for his patience, loving support, and preparation of late meals
• My son, John, daughter-in-law, Cindy, grandson, Daniel, and granddaughter, Emily, for the precious things in life
• The wonderful students over many years whose hard work and commitment always motivated me and put purpose in my writing

FAVORITE QUOTES

The whole art of teaching is only the art of awakening the natural curiosity of young minds.

—Anatole France

One must learn by doing the thing; though you think you know it, you have no certainty until you try.

—Sophocles

Discovery consists of seeing what everybody has seen and thinking what nobody has thought.

—Albert Szent-Györgyi

I never teach my pupils; I only attempt to provide the conditions in which they can learn.

—Albert Einstein
Preface

Welcome to the fifth edition of *General, Organic, and Biological Chemistry: Structures of Life*. This chemistry text was written and designed to help you prepare for a career in a health-related profession, such as nursing, dietetics, respiratory therapy, and environmental and agricultural science. This text assumes no prior knowledge of chemistry. My main objective in writing this text is to make the study of chemistry an engaging and a positive experience for you by relating the structure and behavior of matter to its role in health and the environment.

It is my goal to help you become a critical thinker by understanding scientific concepts that will form a basis for making important decisions about issues concerning health and the environment. Thus, I have utilized materials that help you to learn and enjoy chemistry

- relate chemistry to clinical stories and careers that interest you
- develop problem-solving skills that lead to your success in chemistry
- promote learning and success in chemistry

New for the Fifth Edition

This new edition introduces chemistry in a clinical environment beginning with the stories of patients in the Chapter Openers and Clinical Updates that follow the diagnosis and treatment for the patients. New problem-solving strategies include Key Math Skills; Core Chemistry Skills; new Analyze the Problem features; more Guides to Problem Solving; and new Clinical Applications throughout each chapter that add clinical relevance to the chemistry content.

- **NEW AND UPDATED! Chapter Openers** now provide engaging clinical stories in which a metabolic or genetic condition introduces the content of each chapter.
- **NEW! Clinical Careers** include lipidology nurse, exercise physiologist, hepatology nurse, and public health nurse.
- **NEW! Clinical Updates** give a follow up of the diagnosis and treatment for each patient in the Chapter Openers.
- **NEW! Clinical Applications** are added to Questions and Problems sets that show the relevance between the chemistry content and the clinical story.
- **NEW! Biochemistry Chapters 19 to 24** contain new and expanded material on recent topics in biochemistry including CH 19 Alzheimer’s and beta-amyloid proteins that form plaques in the brain, CH 20 lactose intolerance and breath hydrogen test, CH 21 transcription factors, the estrogen receptor, and the impact of altered genes BRAC1 and BRAC2 in breast cancer, CH 22 enzyme deficiencies in glycogen storage diseases, and CH 23 malate-aspartate pathway added, ATP energy values updated to 2.5 ATP for NADH and 1.5 ATP for FADH$_2$, and CH 24 updated beta-oxidation and synthesis of fatty acids.
- **NEW! Ribbon Models** of proteins have been added including lactase with amino acids in the active site, transaminase, trypsin, chymotrypsin, carboxypeptidase, alanine amino transferase, estrogen receptor, cytochrome c, and aspartate transaminase.
- **NEW AND UPDATED! Diagrams** are updated using current models for allosteric enzymes, covalent modification including phosphorylation, 2- and 3-dimensional models of tRNA, DNA transcription, transcription factors in the promoter region, the sites in electron transport blocked by toxins, and urea cycle showing transport between the mitochondrial matrix and the cytosol.
- **NEW AND UPDATED! New biochemistry problems** include action of viruses, transcription and the estrogen receptor, energy diagram for the hydrolysis of ATP, defective enzymes that block the degradation of glycogen, and current values for ATP energy from NADH and FADH$_2$.
- **NEW! Interactive Videos** give students the experience of step-by-step problem solving for problems from the text.
- **NEW! Chapter Readiness** sections at the beginning of each chapter list the Key Math Skills and Core Chemistry Skills from the previous chapters, which provide the foundation for learning new chemistry principles in the current chapter.
- **NEW! Key Math Skills** review basic math relevant to the chemistry you are learning throughout the text. A Key Math Skill Review at the end of each chapter summarizes and gives additional examples.
- **NEW! Core Chemistry Skills** identify the key chemical principles in each chapter that are required for successfully learning chemistry. A Core Chemistry Skill Review at the end of each chapter helps reinforce the material and gives additional examples.
- **UPDATED! Analyze the Problem** features included in the solutions of the Sample Problems strengthen critical-thinking skills and illustrate the breakdown of a word problem into the components required to solve it.
- **UPDATED! Questions and Problems, Sample Problems, and art** are directly related to nursing and health applications to better demonstrate the connection between the chemistry being discussed and how these skills will be needed in professional experience.
- **UPDATED! Combining Ideas** features offer sets of integrated problems that test students’ understanding by integrating topics from two or more previous chapters.
Chapter Organization of the Fifth Edition

In each textbook I write, I consider it essential to relate every chemical concept to real-life issues of health and environment. Because a chemistry course may be taught in different time frames, it may be difficult to cover all the chapters in this text. However, each chapter is a complete package, which allows some chapters to be skipped or the order of presentation to be changed.

Chapter 1, Chemistry in our Lives, now discusses the Scientific Method in everyday terms, guides students in developing a study plan for learning chemistry, and now has a new section of Key Math Skills that review the basic math including scientific notation needed in chemistry calculations.

- A new chapter opener tells the story of a murder and features the work and career of a forensic scientist.
- A new Clinical Update feature follows up with forensic scientists that help solve the murder and includes Clinical Applications related to the story.
- A new section, “Scientific Method: Thinking Like a Scientist,” has been added, which discusses the scientific method in everyday terms.
- A new section, “Key Math Skills,” reviews basic math required in chemistry, such as Identifying Place Values (1.4A), Using Positive and Negative Numbers in Calculations (1.4B) including a new feature Calculator Operations, Calculating Percentages (1.4C), Solving Equations (1.4D), Interpreting Graphs (1.4E), and Writing Numbers in Scientific Notation (1.4 F).
- New sample problems with nursing applications are added. New Sample Problem 1.5 requires the interpretation of a graph to determine the decrease in a child’s temperature when given Tylenol.
- New art includes a photo of a plastic strip thermometer placed on a baby’s forehead to determine body temperature.

Chapter 2, Chemistry and Measurements, looks at measurement and emphasizes the need to understand numerical relationships of the metric system. Significant numbers are discussed in the determination of final answers. Prefixes from the metric system are used to write equalities and conversion factors for problem-solving strategies. Density is discussed and used as a conversion factor.

- A new chapter opener tells the story of a patient with high blood pressure and features the work and career of a registered nurse.
- A new Clinical Update describes the patient’s follow-up visit with his doctor.
- New material is added that illustrates how to count significant figures in equalities and in conversion factors used in a problem setup.
- New abbreviation mcg for microgram is introduced as used in health and medicine.

- New Core Chemistry Skills are added: Counting Significant Figures (2.2), Using Significant Figures in Calculations (2.3), Using Prefixes (2.4), Writing Conversion Factors from Equalities (2.5), Using Conversion Factors (2.6), and Using Density as a Conversion Factor (2.7).
- New photos, including an endoscope, a urine dipstick, a pint of blood, Keflex capsules, and salmon for omega-3 fatty acids, are added to improve visual introduction to clinical applications of chemistry.
- Updated Guides to Problem Solving (GPS) use color blocks as visual guides through the solution pathway.
- Updated Sample Problems relate questions and problem solving to health-related topics such as the measurements that a nurse would make, blood volume, omega-3 fatty acids, radiological imaging, and medication orders.
- New Clinical Applications feature questions about health-related settings including measurements made by a nurse, daily values for minerals and vitamins, equalities and conversion factors for medications, and health questions related to the Clinical Update story.

Chapter 3, Matter and Energy, classifies matter and states of matter, describes temperature measurement, and discusses energy, specific heat, and energy in nutrition. Physical and chemical changes and physical and chemical properties are now discussed in more depth.

- A new chapter opener describes diet and exercise for an overweight child with type 2 diabetes and features the work and career of a dietitian. A new Clinical Update describes the new diet for weight loss.
- Chapter 3 has a new order of topics: 3.1 Classification of Matter, 3.2 States and Properties of Matter, 3.3 Temperature, 3.4 Energy, 3.5 Energy and Nutrition, 3.6 Specific Heat, and 3.7 Changes of State. Section 3.7 Changes of State now includes heat of fusion and vaporization, and combinations of energy calculations.
- New Core Chemistry Skills are added: Classifying Matter (3.1), Identifying Physical and Chemical Changes (3.2), Converting between Temperature Scales (3.3), Using Energy Units (3.4), and Using the Heat Equation (3.6).
- New Questions and Problems and Sample Problems now have more clinical applications to nursing and health, including Sample Problem 3.4, high temperatures used in cancer treatment; Sample Problem 3.5, the energy produced by a high-energy shock output of a defibrillator; Sample Problem 3.7, body temperature lowering using a cooling cap; and Sample Problem 3.8, ice bag therapy for muscle injury.
- The interchapter problem set, Combining Ideas from Chapters 1 to 3, completes the chapter.

Chapter 4, Atoms, introduces elements and atoms and the periodic table. The names and symbols of element 114, Flerovium, Fl, and 116, Livermorium, Lv, have been added to update the periodic table. Atomic numbers and mass number are determined for isotopes. Atomic mass is calculated
using the masses of the naturally occurring isotopes and their abundances. Electron arrangements are written using orbital diagrams, electron configurations, and abbreviated electron configurations. Trends in the properties of elements are discussed, including atomic size, Lewis symbols, ionization energy, and metallic character.

- A new chapter opener features chemistry in agriculture and the career of a farmer.
- A new Clinical Update describes the improvement in crop production by the farmer.
- New Core Chemistry Skills are added: Counting Protons and Neutrons (4.4), Writing Atomic Symbols for Isotopes (4.5), Writing Electron Configurations (4.7), Using the Periodic Table to Write Electron Configurations (4.7), Identifying Trends in Periodic Properties (4.8), and Drawing Lewis Symbols (4.8).
- A new weighted average analogy uses 8-lb and 14-lb bowling balls and the percent abundance of each to calculate weighted average of a bowling ball.
- New nursing and clinical applications are added to Sample Problems/Questions and Problems.
- Updated photos and diagrams including a new diagram for the electromagnetic spectrum are added.

Chapter 5, Nuclear Chemistry, looks at the types of radiation emitted from the nuclei of radioactive atoms. Nuclear equations are written and balanced for both naturally occurring radioactivity and artificially produced radioactivity. The half-lives of radioisotopes are discussed, and the amount of time for a sample to decay is calculated. Radioisotopes important in the field of nuclear medicine are described.

- A new chapter opener about the work and career of a nuclear medicine technologist is added.
- A new Clinical Update discusses cardiac imaging using the radioisotope T1-201.
- New Core Chemistry Skills are added: Writing Nuclear Equations (5.2) and Using Half-Lives (5.4).
- New Sample Problems and Questions and Problems use nursing and clinical examples, including Sample Problem 5.3 that describe the radioisotope yttrium-90 use in cancer and arthritis treatments. Sample Problem 5.6 that uses phosphorus-32 for the treatment of leukemia and Sample Problem 5.9 that uses titanium seeds containing a radioactive isotope implanted in the body to treat cancer.
- Clinical applications include radioisotopes in nuclear medicine, activity, half-lives, and dosage of radioisotopes.

Chapter 6, Ionic and Molecular Compounds, describes the formation of ionic and covalent bonds. Chemical formulas are written, and ionic compounds—including those with polyatomic ions—and molecular compounds are named. Section 6.2 is titled “Writing Formulas for Ionic Compounds,” 6.5 is titled “Molecular Compounds: Sharing Electrons,” and 6.6 is titled “Lewis Structure for Molecules and Polyatomic Ions.”

- The chapter opener describes aspirin as a molecular compound and features the work and career of a pharmacy technician.
- A new Clinical Update describes several types of compounds at a pharmacy and includes Clinical Applications.
- “Ions: Transfer of Electrons” has been rewritten to emphasize the stability of the electron configuration of a noble gas.
- New Core Chemistry Skills are added: Writing Positive and Negative Ions (6.1), Writing Ionic Formulas (6.2), Naming Ionic Compounds (6.3), Writing the Names and Formulas for Molecular Compounds (6.5), Drawing Lewis Structures (6.6), Using Electronegativity (6.7), Predicting Shape (6.8), Identifying Polarity of Molecules (6.8), and Identifying Attractive Forces (6.9).
- A new art comparing the particles and bonding of ionic compounds and molecular compounds has been added.
- Bismuth was added to Table 6.5, Some Metals That Form More Than One Positive Ion.
- Analyze the Problem feature was updated for Sample Problems 6.4, 6.5, 6.6, 6.9, 6.10.
- The interchapter problem set, Combining Ideas from Chapters 4 to 6, completes the chapter.

Chapter 7, Chemical Reactions and Quantities, introduces moles and molar masses of compounds, which are used in calculations to determine the mass or number of particles in a given quantity. Students learn to balance chemical equations and to recognize the types of chemical reactions: combination, decomposition, single replacement, double replacement, and combustion reactions. Section 7.3 discusses Oxidation–Reduction Reactions using real-life examples, including biological reactions. Section 7.6, Mole Relationships in Chemical Equations, and Section 7.7, Mass Calculations for Reactions, prepare students for the quantitative relationships of reactants and products in reactions. Section 7.8, Limiting Reactants and Percent Yield, identifies limiting reactants and calculates percent yield, and Section 7.9, Energy in Chemical Reactions, calculates the energy in exothermic and endothermic chemical reactions.

- A chapter opener describes the chemical reaction that is used to whiten teeth and features the work and career of a dental hygienist.
- Sample Problems and problem sets include Clinical Applications for nursing.
- New Core Chemistry Skills are added: Balancing a Chemical Equation (7.1), Classifying Types of Chemical Reactions (7.2), Identifying Oxidized and Reduced Substances (7.3), Converting Particles to Moles (7.4), Calculating Molar Mass (7.5), Using Molar Mass as a Conversion Factor (7.5), Using Mole–Mole Factors (7.6), Converting Grams to Grams (7.7), Calculating Quantity of Product from a Limiting Reactant (7.8), Calculating Percent Yield (7.8), and Using the Heat of Reaction (7.9).
Chapter 8, Gases, discusses the properties of gases and calculates changes in gases using the gas laws: Boyle’s, Charles’s, Gay-Lussac’s, Avogadro’s, Dalton’s, and the Ideal Gas Law. Problem-solving strategies enhance the discussion and calculations with gas laws including chemical reactions using the ideal gas law.

• The chapter opener describes a child with asthma and her treatment with oxygen and features the work and career of a respiratory therapist is added. A new Clinical Update describes exercises to prevent exercise-induced asthma. Clinical Applications are related to lung volume and gas laws.
• New Sample Problems and Challenge Problems use nursing and medical examples, including Sample Problem 8.3, calculating the volume of oxygen gas delivered through a face mask during oxygen therapy; and Sample Problem 8.12, preparing a heliox breathing mixture for a scuba diver.
• New Core Chemistry Skills are added: Using the Gas Laws (8.2, 8.3, 8.4, 8.5, 8.6), Using the Ideal Gas Law (8.7), Calculating Mass or Volume of a Gas in a Chemical Reaction (8.7), and Calculating Partial Pressure (8.8).
• Clinical applications include calculations of mass or pressure of oxygen in uses of hyperbaric chambers.
• The interchapter problem set, Combining Ideas from Chapters 7 and 8, completes the chapter.

Chapter 9, Solutions, describes solutions, electrolytes, saturation and solubility, insoluble salts, concentrations, and osmosis. New problem-solving strategies clarify the use of concentrations to determine volume or mass of solute. The volumes and concentrations of solutions are used in calculations of dilutions, reactions, and titrations. Properties of solutions, osmosis in the body, and dialysis are discussed.

• The chapter opener describes a patient with kidney failure and dialysis treatment and features the work and career of a dialysis nurse.
• New Core Chemistry Skills are added: Using Solubility Rules (9.3), Calculating Concentration (9.4), Using Concentration as a Conversion Factor (9.4), Calculating the Quantity of a Reactant or Product (9.4), and Calculating the Boiling Point/Freezing Point of a Solution (9.6).
• Table 9.6 Electolytes in Blood Plasma and Selected Intravenous Solutions is updated. Table 9.7 Solubility Rules for Ionic Solids in Water is updated.
• Molality is removed.
• New clinical applications include saline solutions, mass of solution in a mannitol, a lactated Ringer’s solution, and a Pedialyte solution, solutions of medications, electrolytes in dialysis, and reactions of antacids.

Chapter 10, Reaction Rates and Chemical Equilibrium, looks at the rates of reactions and the equilibrium condition when forward and reverse rates for a reaction become equal. Equilibrium expressions for reactions are written and equilibrium constants are calculated. Le Châtelier’s principle is used to evaluate the impact on concentrations when stress is placed on the system.

• A new chapter opener describes the symptoms of infant respiratory distress syndrome (IRDS) and discusses the career of a neonatal nurse.
• The Clinical Update describes a child with anemia, hemoglobin-oxygen equilibrium, and a diet that is high in iron-containing foods.
• New Core Chemistry Skills are added: Writing the Equilibrium Constant (10.3), Calculating an Equilibrium Constant (10.3), Calculating Equilibrium Concentrations (10.4), and Using Le Châtelier’s Principle (10.5).
• New problems that visually represent equilibrium situations are added.
• Clinical applications include hemoglobin equilibrium and anemia.
• A new diagram represents the transport of O₂ by hemoglobin from the lungs to the tissues and muscles.
• Updates of Analyze the Problem include Sample Problems 10.4 and 10.5.

Chapter 11, Acids and Bases, discusses acids and bases and their strengths, conjugate acid–base pairs. The dissociation of strong and weak acids and bases is related to their strengths as acids or bases. The dissociation of water leads to the water dissociation constant expression, Kₐ, the pH scale, and the calculation of pH. Chemical equations for acids in reactions are balanced and titration of an acid is illustrated. Buffers are discussed along with their role in the blood. The pH of a buffer is calculated.

• A new chapter opener describes a blood sample for an emergency room patient sent to the clinical laboratory for analysis of blood pH and CO₂ gas and features the work and career of a clinical laboratory technican.
• Section 11.2 is now a discussion of Brønsted–Lowry Acids and Bases.
• A new Clinical Update discusses the symptoms and treatment of acid reflux disease.
• Analyze the Problem was updated in Sample Problems 11.3, 11.6, 11.8, 11.10, 11.12, and 11.13.
• Key Math Skills are added: Calculating pH from [H₃O⁺] (11.6) and Calculating [H₂O⁺] from pH (11.6).
• New Core Chemistry Skills are added: Identifying Conjugate Acid–Base Pairs (11.2), Calculating [H₂O⁺] and [OH⁻] in Solutions (11.5), Writing Equations for Reactions of Acids and Bases (11.7), Calculating Molarity or Volume of an Acid or Base in a Titration (11.8), and Calculating the pH of a Buffer (11.9).
• A new Guide to Writing Conjugate Acid–Base Pairs has been added. Guide to Calculating pH of an Aqueous Solutions, Calculating [H₂O⁺] from pH, Calculations for an Acid-Base Titration, and Calculating pH of a Buffer were updated.
• Clinical applications include calculating [OH⁻] or [H₂O⁺] of body fluids, foods, blood plasma, pH of body fluids, grams of antacids to neutralize stomach acid, and buffers for stomach acid.
• New visuals include the ionization of the weak acid hydrofluoric acid, a new photo of calcium hydroxide and information about its use in the food industry and
dentistry, as well as a new photo of sodium bicarbonate reacting with acetic acid.

- The interchapter problem set, Combining Ideas from Chapters 9 to 11, completes the chapter.

Chapter 12, Introduction to Organic Chemistry: Hydrocarbons, combines Chapters 11 and 12 of GOB, fourth edition. This new chapter compares inorganic and organic compounds, and describes the structures and naming of alkanes, alkenes including cis–trans isomers, alkynes, and aromatic compounds.

- A new chapter opener describes a fire victim and the search for traces of accelerants and fuel at the arson scene and features the work and career of a firefighter/emergency medical technician.
- A Clinical Update describes treatment for a burn patient and the identification of the fuels at the arson scene.
- Chapter 12 has a new order of topics: 12.1 Organic Compounds, 12.2 Alkanes, 12.3 Alkanes with Substituents, 12.4 Properties of Alkanes, 12.5 Alkenes and Alkynes, 12.6 Cis–Trans Isomers, 12.7 Addition Reactions, and 12.8 Aromatic Compounds.
- The wedge-dash models of methane and ethane have been added.
- New Core Chemistry Skills are added: Naming and Drawing Alkanes (12.2) and Writing Equations for Hydrogenation, Hydration, and Polymerization Hydration, and Polymerization of Alkenes (12.7).
- Line-angle structural formulas were added to Table 12.2.
- Guides to Drawing Structural Formulas for Alkanes, and Naming Alkanes with Substituents have been added.
- The Chemistry Link to Industry Crude Oil has been removed.
- Polymerization was added to Table 12.8, Summary of Addition Reactions.
- The Analyze the Problem features were updated in Sample Problem 12.7, 12.9, and 12.10.

Chapter 13, Alcohols, Phenols, Thiols, and Ethers, describes the functional groups and names of alcohols, phenols, thiols, and ethers.

- The chapter opener describes regional anesthetics for child birth and features the work and career of a nurse anesthetist.
- A Clinical Update describes some foods added to a diet plan including a comparison of their functional groups.
- New Guides to Naming Alcohols, and Phenols, and Writing IUPAC Names for Ethers have been added.
- The classification of alcohols has been moved to Section 13.3 “Physical Properties of Alcohols, Phenols, and Ethers.”
- New material on the use of phenol by Joseph Lister as the first surgical antiseptic is added.

Chapter 14, Aldehydes, Ketones, and Chiral Molecules, discusses the nomenclature, structures, and oxidation and reduction of aldehydes and ketones. The chapter discusses Fischer projections, chiral molecules, and mirror images to prepare students for the structures of carbohydrates in Chapter 15.

- A new chapter opener describes the risk factors for melanoma and discusses the career of a dermatology nurse.
- The Clinical Update discusses melanoma, skin protection, and functional groups of sunscreens.
- Line-angle structural formulas for aldehydes and ketones are added.
- New Core Chemistry Skills are added: Naming Aldehydes and Ketones (14.1), Identifying Chiral Molecules (14.5), and Identifying d- and L-Fischer Projections (14.5).
- New clinical applications include medicinal herbs, chiral carbon atoms in citronellol, alanine, amphetamine, and norepinephrine, and functional groups in sunscreens.
- The interchapter problem set, Combining Ideas from Chapters 12 to 14, completes the chapter.

Chapter 15, Carbohydrates, describes the carbohydrate molecules monosaccharides, disaccharides, and polysaccharides and their formation by photosynthesis. Monosaccharides are classified as aldo or keto pentoses or hexoses. Fischer projections and d and l notations are described. Carbohydrates used as sweeteners and carbohydrates used in blood typing are discussed. The formation of glycosidic bonds in disaccharides and polysaccharides is described.

- A new chapter opener describes a diabetes patient and her diet and the work and career of a diabetes nurse.
- New Core Chemistry Skills are added: Identifying d- and L-Fischer Projections (15.2) and Drawing Haworth Structures (15.3).
- Guide to Drawing Haworth Structures is updated.

Chapter 16, Carboxylic Acids and Esters, discusses the functional groups and naming of carboxylic acids and esters. Chemical reactions include esterification, amidation and acid and base hydrolysis of esters.

- A new chapter opener describes heart surgery and discusses the work and career of a surgical technician.
- A Clinical Update describes the use of liquid bandages.
- New Core Chemistry Skills are added: Naming Carboxylic Acids (16.1) and Hydrolyzing Esters (16.5).

Chapter 17, Lipids, discusses the alcohols and carboxylic acids found in fatty acids, and the formation of ester bonds in triacylglycerols and glycerophospholipids. Chemical properties of fatty acids and their melting points along with the hydrogenation of unsaturated triacylglycerols are discussed. Steroids, which are based on a group of connected multicyclic rings such as...
Preface

Chapter 17, Lipids, describes the role of lipids in the body, cholesterol, bile salts, and steroid hormones, are described. Chemistry Links to Health include “Omega-3 Fatty Acids in Fish Oils,” “Converting Unsaturated Fats to Saturated Fats: Hydrogenation and Interesterification,” “Infant Respiratory Distress Syndrome (IRDS),” and “Anabolic Steroids.” The role of phospholipids in the lipid bilayer of cell membranes is discussed as well as the lipids that function as steroid hormones.

- A new chapter opener describes a patient with symptoms of familial hypercholesterolemia and features the work and career of a clinical lipid specialist.
- The Clinical Update describes changes in diet and exercise along with medications for treating high LDL-cholesterol levels.
- New Core Chemistry Skills are added: Identifying Fatty Acids (17.2), Drawing Structures for Triacylglycerols (17.3), Drawing the Products for the Hydrogenation, Hydrolysis, and Saponification of a Triacylglycerol (17.4), and Identifying the Steroid Nucleus (17.6).
- New notation for number of carbon atoms and double bonds in a fatty acid is added.
- New color-block diagrams for triacylglycerols, glycerophospholipids, and sphingolipids are added.
- New lipid panel for cholesterol, triglycerides, HDL, LDL, and cholesterol/HDL ratio is added.
- New photos include jojoba plant, use of triacylglycerols to thicken creams and lotions, and poisonous snake with venom that hydrolyzes phospholipids in red blood cells.
- New clinical applications include omega-3 fatty acids in fish oils, prostaglandins, drawing condensed and line-angle structure formulas for triacylglycerols and phospholipids in the body, cholesterol, bile salts, steroid hormones, and cell membranes.

Chapter 18, Amines and Amides, emphasizes the nitrogen atom in their functional groups and their names. Alkaloids are discussed as the naturally occurring amines in plants. Section 18.4 is now Neurotransmitters. Chemical reactions include amidation, and acid and base hydrolysis of amides.

- The chapter opener describes pesticides and pharmaceuticals used on a ranch and discusses the career of an environmental health practitioner.
- The Clinical Update describes the collection of soil and water samples for testing of insecticides and antibiotics.
- New art includes hemlock for coniine, crack cocaine, sedamine, structures of dicyclanil and enrofloxacin, and a soil collection bag.
- More line-angle structure formulas are drawn in the text and problem sections.
- New clinical applications include novocaine, lidocaine, ritalin, niacin, serotonin, histamine, acetylcholine, dose calculations of pesticides and antibiotics, enrofloxacin, and volataren.
- New Core Chemistry Skills are added: Forming Amides (18.5) and Hydrolyzing Amides (18.6).
- The interchapter problem set, Combining Ideas from Chapters 15 to 18, completes the chapter.

Chapter 19, Amino Acids and Proteins, discusses amino acids, formation of peptide bonds and proteins, and structural levels of proteins. Amino acids are drawn as zwitterions in physiological solutions. Section 19.4 describes the primary and secondary levels of protein structure. Section 19.5 describes the tertiary and quaternary levels of proteins.

- A new chapter opener describes some symptoms of Alzheimer’s disease and changes in brain proteins and discusses the career of a Radiology Technician.
- The Clinical Update describes a PET scan of the brain to determine the amount of plaque formation and cognitive decline, and the diagnosis and treatment for Alzheimer’s disease.
- The terms N-terminus and C-terminus are now used and the repeat backbone of a peptide is introduced.
- Amino acids are drawn with the carboxyl or carboxylate groups showing single and double bonds to O atoms.
- Updates have been made in Analyze the Problem for Sample Problem 19.1, Sample Problem 19.3, and Sample Problem 19.4.
- New Core Chemical Skills are added: Drawing the Zwitterion for an Amino Acid (19.1) and Identifying the Primary, Secondary, Tertiary, and Quaternary Structures of Proteins (19.4, 19.5).
- New Chemistry Links to Health are added: “Protein Sequencing,” and “Protein Secondary Structures and Alzheimer’s Disease.”
- The use of electrophoresis to diagnose sickle-cell anemia was added to Chemistry Link to Health: Sickle-Cell Anemia.
- New ribbon models of beta-amyloid proteins in normal brain and an Alzheimer’s brain are added.
- A new diagram showing the separation of proteins by electrophoresis to diagnose sickle-cell anemia has been added.
- New clinical applications include essential amino acids, protein sequencing, proteins in Alzheimer’s, drawing peptides, and identifying the C-terminus and the N-terminus of peptides in health.
- The material on mad cow disease has been removed.

Chapter 20, Enzymes and Vitamins, relates the importance of the three-dimensional shape of proteins to their function as enzymes. The shape of an enzyme and its substrate are factors in enzyme regulation. End products of an enzyme-catalyzed sequence can increase or decrease the rate of an enzyme-catalyzed reaction. Other regulatory processes include allosteric enzymes, covalent modification and phosphorylation, and zymogens. Proteins change shape and lose function when subjected to pH changes and high temperatures. The important role of water-soluble vitamins as coenzymes is related to enzyme function.
Chapter 21, Nucleic Acids and Protein Synthesis, describes the nucleic acids and their importance as biomolecules that store and direct information for the synthesis of cellular components. The role of complementary base pairing is discussed in that store and direct information for the synthesis of cellular components. The role of RNA is discussed in the relationship of the genetic code to the sequence of amino acids in a protein. Mutations describe ways in which the nucleotide sequences are altered in genetic diseases. We also look at how DNA or RNA in viruses utilizes host cells to produce more viruses.

- A new chapter opener describes a patient diagnosis and treatment of breast cancer and discusses the work and career of a histology technician.
- The Clinical Update describes estrogen positive tumors, the impact of the altered genes BRCA1 and BRCA2 on the estrogen receptor, and medications to suppress tumor growth.
- Nucleotides in RNA and DNA are now named by adding monophosphate such as adenosine monophosphate.
- The synthesis of the lagging strand now include primers and single-strand binding proteins in a new Figure 21.8 and Table 21.24.
- Clinical applications include mRNA segments for human insulin, mutations in sickle-cell anemia, estrogen receptors, and segments of BRCA1 and BRCA2 genes.
- Entry inhibitors are added in inhibitors of reverse transcription.
- The discussion of the lactose operon was omitted.
- New problems are added for DNA cleavage by restriction enzymes.
- Transcription factors that bind RNA polymerase to DNA are now discussed as part of the regulation of transcription.
- One-letter abbreviations for amino acids were added to Table 21.6 Codons in mRNA: The Genetic Code for Amino Acids.
- Mutations are now named as point mutations, deletion mutations, and insertion mutations.
- New Core Chemical Skills are added: Writing the Complementary DNA Strand (21.3), Writing the mRNA Segment for a DNA Template (21.5), and Writing the Amino Acid for an mRNA Codon (21.6).
- The interchapter problem set, Combining Ideas from Chapters 19 to 21, completes the chapter.

Chapter 22, Metabolic Pathways for Carbohydrates, describes the stages of metabolism and the digestion of carbohydrates, our most important fuel. The breakdown of glucose to pyruvate is described using glycolysis, which is followed under aerobic conditions by the decarboxylation of pyruvate to acetyl CoA. The synthesis of glycogen and the synthesis of glucose from noncarbohydrate sources are discussed.

- A new chapter opener describes the symptoms of a glycogen storage disease and discusses the career of a histology nurse.
- The Clinical Update describes medical treatment of frequent feedings of glucose for von Gierke’s disease, in which a child has a defective glucose-6-phosphatase and cannot break down glucose-6-phosphate to glucose.
- New or updated diagrams were prepared for hydrolysis of ATP, ATP and muscle contraction, glycolysis, entry of galactose and fructose into glycolysis pathway, pathways for pyruvate, summary of glycolysis and glycogenolysis, summary of glycolysis and gluconeogenesis, and the Cori cycle.
- New to this edition is material describing the pentose phosphate pathway for the oxidation of glucose that produces NADPH and pentoses.
- Chemistry Links to Health include “ATP Energy and Ca++ Needed to Contract Muscles,” “Glycogen Storage Diseases (GSDs)”.
- New tables are added to summarize enzymes and coenzymes in metabolic reactions: “Characteristics of Oxidation and Reduction in Metabolic Pathways” (Table 22.2) and “Enzymes and Coenzymes in Metabolic Reactions” (Table 22.3).
- New color-coded art was added for structures of NAD and FAD in Figures 22.5 and 22.6.
- New art in Figure 22.12 adds glucose structures for reactions for glycogenosis.
- New Core Chemical Skills are added: Identifying Important Coenzymes in Metabolism (22.2), Identifying the Compounds in Glycolysis (22.4), Identifying the Compounds and Enzymes in Glycogenesis and Glycogenolysis (22.6).

Chapter 23, Metabolism and Energy Production, looks at the entry of acetyl CoA into the citric acid cycle and the production of reduced coenzymes for electron transport, oxidative phosphorylation, and the synthesis of ATP. The malate-aspartate pathway was added to describe the transport of NADH from the cytosol into the mitochondrial matrix. Many diagrams were added or updated, including catalysis of lactose,
covalent modification, phosphorylation, formation of phospho-nucleotides, DNA replication, recombinant DNA, muscle contraction, glycolysis, and galactose and fructose in glycolysis.

- The chapter opener describes the symptoms of pulmonary emphysema and discusses the career of an exercise physiologist.
- Clinical applications include enzyme deficiencies in the citric acid cycle, inhibitors of electron transport, low levels of O₃ and NADH production, and basal metabolic rate, kilocalories, and kilograms of ATP.
- The Clinical Update describes the exercise stress test and normal values of oximeter readings, and the exercises used to improve fitness and blood O₂ saturation.
- A new diagram (Figure 23.7) illustrates the malate-aspartate shuttle, which transfers energy stored in NADH in the cytosol into the mitochondrial matrix by regenerating NADH.
- The citric acid cycle was updated with enzyme names, identification of acetyl carbon group, and removal of ATP from electron transport system.
- The diagram of electron transport was updated and a new diagram of the sites in electron transport that are blocked by inhibitors was added.
- The details of ATP production by ATP synthase and its protein subunits were removed.
- The values for ATP production were adjusted to 2.5 ATP for NADH and 1.5 ATP for FADH₂.
- A new diagram emphasizes a mitochondrion and the product of NADH and FADH₂ from the citric acid cycle, and the formation of ATP from electron transport.
- New Core Chemistry Skills are added: Describing the Reactions in the Citric Acid Cycle (23.1), and Calculating the ATP Produced from Glucose (23.4).

Chapter 24, Metabolic Pathways for Lipids and Amino Acids, discusses the digestion of lipids and proteins and the metabolic pathways that convert fatty acids and amino acids into energy. Discussions include the conversion of excess carbohydrates to triacylglycerols in adipose tissue and how the intermediates of the citric acid cycle are converted to nonessential amino acids.

- A new chapter opener describes a liver profile with elevated levels of liver enzymes for a patient with chronic hepatitis C infection and discusses the career of a public health nurse.
- The Clinical Update describes interferon and ribavirin therapy for hepatitis C.
- The equations for the metabolism of glycerol were redrawn as two separate reactions.
- The diagram in Figure 24.3 was updated to include a transport region at the inner mitochondrial membrane for the transport of fatty acyl carnitine between the cytosol and the matrix.
- New ribbon model of aspartate transaminase is added to Sample Problem 24.8.
- Transport molecules are added to the urea cycle in Figure 24.9.
- New line-angle structural formulas replaced condensed structural formulas of fatty acyl CoA molecules.
- The Core Chemistry Skills are added: Calculating the ATP from Fatty Acid Oxidation (β Oxidation) (24.3), Describing How Ketone Bodies are Formed (24.4), and Distinguishing Anabolic and Catabolic Pathways (24.9).
- The interchapter problem set, Combining Ideas from Chapters 22 to 24, completes the chapter.

Acknowledgments

The preparation of a new text is a continuous effort of many people. I am thankful for the support, encouragement, and dedication of many people who put in hours of tireless effort to produce a high-quality book that provides an outstanding learning package. I am extremely grateful to Dr. Laura Frost, who provided new and expanded material on current topics in the Biochemistry Chapters 19–24. The editorial team at Pearson has done an exceptional job. I want to thank Jeanne Zalesky, Editor-in-Chief, and Terry Haugen, Senior Acquisitions Editor who supported our vision of this fifth edition.

I appreciate all the wonderful work of Lisa Pierce, project manager, who skillfully brought together reviews, art, web site materials, and all the things it takes to prepare a book for production. I appreciate the work of Meeta Pendharkar and Jenna Vittorioso, project managers, and of Lumina Datamatics, Inc., who brilliantly coordinated all phases of the manuscript to the final pages of a beautiful book. Thanks to Mark Quirie, manuscript and accuracy reviewer, and Lumina Datamatics copy editor and proofreaders, who precisely analyzed and edited the initial and final manuscripts and pages to make sure the words and problems were correct to help students learn chemistry. Their keen eyes and thoughtful comments were extremely helpful in the development of this text.

I am especially proud of the art program in this text, which lends beauty and understanding to chemistry. I would like to thank Wynne Au Yeung, art specialist; Derek Bacchus, Design Manager, and Jerilyn Bockorick, interior and cover designers, whose creative ideas provided the outstanding design for the cover and pages of the book. Stephen Merland and Jen Simmons, photo researchers, were outstanding in researching and selecting vivid photos for the text so that students can see the beauty of chemistry, and to William Opaluch, text permissions manager for clearing third party content. Thanks also to Bio-Rad Laboratories for their courtesy and use of Know-It-All ChemWindows, drawing software that helped us produce chemical structures for the manuscript. The macro-to-micro
illustrations designed by Imagineering give students visual impressions of the atomic and molecular organization of everyday things and are a fantastic learning tool. I also appreciate the hard work of Will Moore, Product Marketing Manager, and Chris Barker, Field Marketing Manager for their dedication in conveying the ideas of this revision through their marketing expertise.

I am extremely grateful to an incredible group of peers for their careful assessment of all the new ideas for the text; for their suggested additions, corrections, changes, and deletions; and for providing an incredible amount of feedback about improvements for the book. I admire and appreciate every one of you.

If you would like to share your experience with chemistry, or have questions and comments about this text, I would appreciate hearing from you.

Karen Timberlake
Email: khemist@aol.com
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Benefit</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Opener</td>
<td>Chapter Openers begin with Clinical Conditions and discuss careers in fields such as nursing, agriculture, exercise physiology, and anesthesia.</td>
<td>Connects a clinical situation with the chemistry in the chapter and show you how health professionals use chemistry every day.</td>
<td>183</td>
</tr>
<tr>
<td>Chemistry Link to Health</td>
<td>Chemistry Links to Health apply chemical concepts to health and medicine such as weight loss and weight gain, trans fats, anabolic steroids, alcohol abuse, blood buffers, kidney dialysis, and cancer.</td>
<td>Provide you with connections that illustrate the importance of understanding chemistry in real-life health and medical situations.</td>
<td>78</td>
</tr>
<tr>
<td>Clinical Update</td>
<td>Clinical Updates give a follow-up to the medical condition and treatment discussed in the chapter opener and include Clinical Application questions.</td>
<td>Continue a clinical theme through the entire chapter utilizing the chemistry content of the chapter.</td>
<td>90</td>
</tr>
<tr>
<td>Macro-to-Micro Art</td>
<td>Macro-to-Micro Art utilizes photographs and drawings to illustrate the atomic structure of chemical phenomena.</td>
<td>Helps you connect the world of atoms and molecules to the macroscopic world.</td>
<td>253</td>
</tr>
<tr>
<td>Chemistry Links to the Environment</td>
<td>Chemistry Links to the Environment relate chemistry to environmental topics such as climate change, radon in our homes, and pheromones.</td>
<td>Helps you extend your understanding of the impact of chemistry on the environment.</td>
<td>75</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Benefit</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Learning Goals</td>
<td>at the beginning and end of each section identify the key concepts for that section and provide a roadmap for your study.</td>
<td>Help you focus your studying by emphasizing what is most important in each section.</td>
<td>851</td>
</tr>
<tr>
<td>Timberlake’s accessible Writing Style</td>
<td>is based on careful development of chemical concepts suited to the skills and backgrounds of students in chemistry.</td>
<td>Helps you understand new terms and chemical concepts.</td>
<td>551</td>
</tr>
<tr>
<td>Concept Maps</td>
<td>at the end of each chapter show how all the key concepts fit together.</td>
<td>Encourage learning by providing a visual guide to the interrelationship among all the concepts in each chapter.</td>
<td>859</td>
</tr>
<tr>
<td>Key Math Skills</td>
<td>review the basic math required needed for chemistry. Instructors can also assign these through MasteringChemistry.</td>
<td>Help you master the basic quantitative skills to succeed in chemistry.</td>
<td>14</td>
</tr>
<tr>
<td>Core Chemistry Skills</td>
<td>identify content crucial to problem-solving strategies related to chemistry. Instructors can also assign these through MasteringChemistry.</td>
<td>Help you master the basic problem-solving skills needed to succeed in chemistry.</td>
<td>837</td>
</tr>
<tr>
<td>The Art and Photo Program</td>
<td>is beautifully rendered, pedagogically effective, and includes questions with all the figures.</td>
<td>Helps you think critically using photos and illustrations.</td>
<td>565</td>
</tr>
<tr>
<td>The Chapter Reviews</td>
<td>include Learning Goals and visual thumbnails to summarize the key points in each section.</td>
<td>Help you determine your mastery of the chapter concepts and study for your tests.</td>
<td>715</td>
</tr>
<tr>
<td>Explore Your World</td>
<td>features are hands-on activities that use everyday materials to encourage you to explore selected chemistry topics.</td>
<td>Helps you interact with chemistry, learn scientific method, and support critical thinking.</td>
<td>580</td>
</tr>
</tbody>
</table>
Tools to engage students in chemistry and show them how to solve problems

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Benefit</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Applications</td>
<td>Clinical Applications connect the chemistry in each section with health and clinical problems.</td>
<td>Shows you how the chemistry you are learning is related to health and medicine.</td>
<td>73</td>
</tr>
<tr>
<td>Guides to Problem Solving (GPS)</td>
<td>illustrate the steps needed to solve problems.</td>
<td>Visually guide you step-by-step through each problem-solving strategy.</td>
<td>44</td>
</tr>
<tr>
<td>Analyze the Problems</td>
<td>included in Sample Problem Solutions convert information in a word problem into components for problem solving.</td>
<td>Help you identify and utilize the components within a word problem to set up a solution strategy.</td>
<td>51</td>
</tr>
<tr>
<td>Questions and Problems</td>
<td>are placed at the end of each section. Problems are paired and the Answers to the odd-numbered problems are given at the end of each chapter.</td>
<td>Encourage you to become involved immediately in the process of problem solving.</td>
<td>554</td>
</tr>
<tr>
<td>Sample Problems</td>
<td>illustrate worked-out solutions with step-by-step explanations and required calculations. Study Checks associated with each Sample Problem allow you to check your problem solving strategies with the Answer.</td>
<td>Provide the intermediate steps to guide you successfully through each type of problem.</td>
<td>44</td>
</tr>
<tr>
<td>Understanding the Concepts</td>
<td>are questions with visual representations placed at the end of each chapter.</td>
<td>Build an understanding of newly learned chemical concepts.</td>
<td>22</td>
</tr>
<tr>
<td>Additional Questions and Problems</td>
<td>at the end of each chapter provide further study and application of the topics from the entire chapter. Problems are paired and the Answers to the odd-numbered problems are given at the end of each chapter.</td>
<td>Promote critical thinking.</td>
<td>22</td>
</tr>
<tr>
<td>Challenge Questions</td>
<td>at the end of each chapter provide complex questions.</td>
<td>Promote critical thinking, group work, and cooperative learning environments.</td>
<td>23</td>
</tr>
<tr>
<td>Combining Ideas</td>
<td>are sets of integrated problems placed after every 2 to 4 chapters that are useful as Practice exams.</td>
<td>Test your understanding of the concepts from previous chapters by integrating topics.</td>
<td>322</td>
</tr>
</tbody>
</table>
Resources

General, Organic, and Biological Chemistry: Structures of Life, fifth edition, provides an integrated teaching and learning package of support material for both students and professors.

<table>
<thead>
<tr>
<th>Name of Supplement</th>
<th>Available in Print</th>
<th>Available Online</th>
<th>Instructor or Student Supplement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Guide and Selected Solutions Manual (ISBN 0133891917)</td>
<td>✓</td>
<td></td>
<td>Resource for Students</td>
<td>The Study Guide and Selected Solutions Manual, by Karen Timberlake and Mark Quirie, promotes active learning through a variety of exercises with answers as well as practice tests that are connected directly to the learning goals of the textbook. Complete solutions to odd-numbered problems are included.</td>
</tr>
<tr>
<td>MasteringChemistry® (www.masteringchemistry.com) (ISBN 0133858375)</td>
<td>✓</td>
<td></td>
<td>Resource for Students and Instructors</td>
<td>MasteringChemistry® from Pearson is the leading online teaching and learning system designed to improve results by engaging students before, during, and after class with powerful content. Ensure that students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics. Students can further master concepts after class through traditional homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.</td>
</tr>
<tr>
<td>MasteringChemistry with Pearson eText (ISBN 0133899306)</td>
<td>✓</td>
<td></td>
<td>Resource for Students</td>
<td>The fifth edition of General, Organic, and Biological Chemistry: Structures of Life features a Pearson eText enhanced with media within Mastering. In conjunction with Mastering assessment capabilities, Interactive Videos and 3D animations will improve student engagement and knowledge retention. Each chapter will contain a balance of interactive animations, videos, sample calculations, and self-assessments/quizzes embedded directly in the eText. Additionally, the Pearson eText offers students the power to create notes, highlight text in different colors, create bookmarks, zoom, and view single or multiple pages.</td>
</tr>
<tr>
<td>Instructor’s Solutions Manual–Download Only (ISBN 0133891909)</td>
<td>✓</td>
<td></td>
<td>Resource for Instructors</td>
<td>Prepared by Mark Quirie, the solutions manual highlights chapter topics, and includes answers and solutions for all questions and problems in the text.</td>
</tr>
<tr>
<td>Instructor Resource Materials–Download Only (ISBN 0133891887)</td>
<td>✓</td>
<td></td>
<td>Resource for Instructors</td>
<td>Includes all the art, photos, and tables from the book in JPEG format for use in classroom projection or when creating study materials and tests. In addition, the instructors can access modifiable PowerPoint™ lecture outlines. Also available are downloadable files of the Instructor’s Solutions Manual and a set of “clicker questions” designed for use with classroom-response systems. Also visit the Pearson Education catalog page for Timberlake’s General, Organic, and Biological Chemistry: Structures of Life fifth Edition, at www.pearsonhighered.com to download available instructor supplements.</td>
</tr>
<tr>
<td>Laboratory Manual by Karen Timberlake (ISBN 0321811852)</td>
<td>✓</td>
<td></td>
<td>Resource for Students</td>
<td>This best-selling lab manual coordinates 35 experiments with the topics in General, Organic, and Biological Chemistry: Structures of Life fifth edition, uses laboratory investigations to explore chemical concepts, develop skills of manipulating equipment, reporting data, solving problems, making calculations, and drawing conclusions.</td>
</tr>
</tbody>
</table>
Clinical Conditions, Applications, and Updates
Clinical features throughout the chapter connect chemistry to real life. Each chapter begins with an image and details of a Clinical Condition being addressed in the field by professionals from nursing, agriculture, exercise physiology, and anesthesia. Clinical Updates throughout the chapter follow the medical condition and treatment discussed in the chapter opener. Clinical Applications within the chapter and end-of-chapter show students how the chemistry they are learning applies specifically to health and medicine.

A CALL CAME IN TO 911 FROM A MAN WHO FOUND
his wife lying on the floor of their home. When the police arrived at the home, they determined that the woman was dead. The husband said he had worked late, and just arrived at their home. The victim’s body was lying on the floor of the living room. There was no blood at the scene, but the police did find a glass on the side table that contained a small amount of liquid. In an adjacent laundry room, the police found a half-empty bottle of antifreeze. The bottle, glass, and liquid were bagged and sent to the forensic laboratory.

In another 911 call, a man was found lying on the grass outside his home. Blood was present on his body, and some bullet casings were found on the grass. Inside the victim’s home, a weapon was recovered. The bullet casings and the weapon were bagged and sent to the forensic laboratory.

Sarah and Mark, forensic scientists, use scientific procedures and chemical tests to examine the evidence from law enforcement agencies. Sarah proceeds to analyze blood, stomach contents, and the unknown liquid from the first victim’s home. She will look for the presence of drugs, poisons, and alcohol. Her lab partner Mark will analyze the fingerprints on the glass. He will also match the characteristics of the bullet casings to the weapon that was found at the second crime scene.

Evidence from a crime scene is sent to the forensic laboratory.

Chemistry in Our Lives

CAREER Forensic Scientist
Most forensic scientists work in crime laboratories that are part of city or county legal systems where they analyze bodily fluids and tissue samples collected by crime scene investigators. In analyzing these samples, forensic scientists identify the presence or absence of specific chemicals within the body to help solve the criminal case. Some of the chemicals they look for include alcohol, illegal or prescription drugs, poisons, bone debris, metals, and various gases such as carbon monoxide. In order to identify these substances, a variety of chemical instruments and highly specific methodologies are used. Forensic scientists also analyze samples from criminal suspects, athletes, and potential employees. They also work on cases involving environmental contamination and animal samples for wildlife crimes. Forensic scientists usually have a bachelor’s degree that includes courses in math, chemistry, and biology.
Interactive Videos
Interactive videos and demonstrations help students through some of the more challenging topics by showing how chemistry works in real life and introducing a bit of humor into chemical problem solving and demonstrations. Topics include Using Conversion Factors, Balancing Nuclear Equations, Chemical v. Physical Change, and Dehydration of Sucrose.

Sample Calculations walk students through the most challenging chemistry problems and provide a fresh perspective on how to approach individual problems and reach their solutions. Topics include Using Conversion Factors, Mass Calculations for Reactions, and Concentration of Solutions.

Green play button icons appear in the margins throughout the text. In the eText, the icons link to new interactive videos that the student can use to clarify and reinforce important concepts. All Interactive Videos are available in web and mobile-friendly formats through the eText, and are assignable activities in MasteringChemistry.
MasteringChemistry®

MasteringChemistry® from Pearson is the leading online teaching and learning system designed to improve results by engaging students before, during, and after class with powerful content. Ensure that students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics. Students can further master concepts after class through traditional homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.

Mastering brings learning full circle by continuously adapting to each student and making learning more personal than ever—before, during, and after class.

Before Class

Dynamic Study Modules
Help students quickly learn chemistry!
Now assignable, Dynamic Study Modules (DSMs) enable your students to study on their own and be better prepared with the basic math and chemistry skills needed to succeed in the GOB course. The mobile app is available for iOS and Android devices for study on the go and results can be tracked in the MasteringChemistry gradebook.

Reading Quizzes
Reading Quizzes give instructors the opportunity to assign reading and test students on their comprehension of chapter content.
Adaptive Follow-Ups
Mastering continuously adapts to each student, making learning more personal than ever.
Adaptive Follow-Ups are personalized assignments that pair Mastering’s powerful content with Knewton’s adaptive learning engine to provide personalized help to students before misconceptions take hold. These assignments are based on each student’s performance on homework assignments and on all work in the course to date, including core prerequisite topics.

During Class

Learning Catalytics
Learning Catalytics is a “bring your own device” student engagement, assessment, and classroom intelligence system. With Learning Catalytics you can:
• Assess students in real time, using open-ended tasks to probe student understanding.
• Understand immediately where students are and adjust your lecture accordingly.
• Manage student interactions with intelligent grouping and timing.

After Class

Tutorials and Coaching
Students learn chemistry by practicing chemistry.
Tutorials, featuring specific wrong-answer feedback, hints, and a wide variety of educationally effective content, guide your students through the toughest topics in General, Organic, and Biological chemistry.

Adaptive Follow-Ups