Basic Technical Mathematics with Calculus SI Version

OTHER PEARSON EDUCATION TITLES OF RELATED INTEREST

Basic Technical Mathematics, Tenth Edition, by Allyn J. Washington

Basic Technical Mathematics with Calculus, Tenth Edition, by Allyn J. Washington

Introduction to Technical Mathematics, Fifth Edition, by Allyn J. Washington, Mario F. Triola, and Ellena Reda

TENTH EDITION

Basic Technical Mathematics with Calculus SI Version

Allyn J. Washington

Dutchess Community College

Michelle Boué

Toronto

Editor-in-Chief: Michelle Sartor **Executive Acquisitions Editor:** Cathleen Sullivan Marketing Manager: Michelle Bish Program Manager: Patricia Ciardullo **Project Manager:** Kimberlev Blakev **Developmental Editor:** Mary Wat Media Editor: Charlotte Morrison-Reed Media Producer: Kelly Cadet Production Services: Heidi Allgair, Cenveo ® Publisher Services Permissions Project Manager: Marnie Lamb Photo Permissions Research: Chritina Simpson, Q2A/Bill Smith Text Permissions Research: Electronic Publishing Services, Inc. Art Director: Zena Denchik Cover Designer: Alex Li Interior Designer: Cenveo® Publisher Services **Cover Image:** Gencho Petkov/Shutterstock

Credits and acknowledgments for material borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text.

Original edition published by Pearson Education, Inc., Upper Saddle River, New Jersey, USA. Copyright © 2009 Pearson Education, Inc. This edition is authorized for sale only in Canada.

If you purchased this book outside the United States or Canada, you should be aware that it has been imported without the approval of the publisher or the author.

Copyright © 2015 Pearson Canada Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Canada Inc., Permissions Department, 26 Prince Andrew Place, Don Mills, Ontario, M3C 2T8, or fax your request to 416-447-3126, or submit a request to Permissions Requests at **www.pearsoncanada.ca**.

10987654321CKV

Library and Archives Canada Cataloguing in Publication

Washington, Allyn J., author Basic technical mathematics with calculus : SI version / Allyn J. Washington, Michelle Boué. -- Tenth edition.

Includes indexes. ISBN 978-0-13-276283-0 (bound)

1. Mathematics--Textbooks. I. Boué, Michelle, author II. Title.

QA37.3.W37 2014 510 C2014-900075-8

Copyright © 2010, 2005, 2000, 1995 Pearson Canada Inc., Toronto, Ontario.

To Douglas, Julia and Andrea ~Michelle Boué

In memory of my loving wife, Millie ~Allyn J. Washington

Contents

	Preface	xi
1	Basic Algebraic Operations	1
1.1	Numbers	2
1.2	Fundamental Operations of Algebra	6
1.3	Measurement, Calculation, and	
	Approximate Numbers	11
1.4	Exponents	21
1.5	Scientific Notation	26
1.6	Roots and Radicals	30
1.7	Addition and Subtraction of Algebraic	
	Expressions	32
1.8	Multiplication of Algebraic Expressions	36
1.9	Division of Algebraic Expressions	38
1.10	Solving Equations	41
1.11	Formulas and Literal Equations	45
1.12	Applied Word Problems	48
Equa	tions, Review Exercises, and Practice Test	51
2	Geometry	55
2.1	Lines and Angles	56

xi

	J	
2.2	Triangles	60
2.3	Quadrilaterals	66
2.4	Circles	69
2.5	Measurement of Irregular Areas	74
2.6	Solid Geometric Figures	78

Equations, Review Exercises, and Practice Test

3	Functions and Graphs	86
3.1	Introduction to Functions	87
3.2	More about Functions	91
3.3	Rectangular Coordinates	95
3.4	The Graph of a Function	97
3.5	More about Graphs	104
3.6	Graphs of Functions Defined by Tables of Data	109
Rev	iew Exercises and Practice Test	112
4	The Trigonometric Functions	115
4.1	Angles	116

Angles 4.1 Defining the Trigonometric Functions 4.2

4.3	Values of the Trigonometric Functions	122
4.4	The Right Triangle	126
4.5	Applications of Right Triangles	131
Equ	ations, Review Exercises, and Practice Test	136
5	Systems of Linear Equations;	
	Determinants	142
5.1	Linear Equations	143
5.2	Graphs of Linear Functions	146
5.3	Solving Systems of Two Linear Equations in Two Unknowns Graphically	149
5.4	Solving Systems of Two Linear Equations in Two Unknowns Algebraically	153
5.5	Solving Systems of Two Linear Equations in Two Unknowns by Determinants	160
5.6	Solving Systems of Three Linear Equations in Three Unknowns Algebraically	166
5.7	Solving Systems of Three Linear Equations in Three Unknowns by Determinants	170
Equ	ations, Review Exercises, and Practice Test	176
6	Factoring and Fractions	181
6.1	Special Products	182
6.2	Factoring: Common Factor and	
	Difference of Squares	185
6.3	Factoring Trinomials	190
6.4	The Sum and Difference of Cubes	196
6.5	Equivalent Fractions	197
6.6	Multiplication and Division of Fractions	202
6.7	Addition and Subtraction of Fractions	206
6.8	Equations Involving Fractions	212
Equ	ations, Review Exercises, and Practice Test	216
7	Quadratic Equations	220
7.1	Quadratic Equations; Solution by Factoring	221

- Completing the Square 7.2 The Quadratic Formula 7.3 7.4 The Graph of the Quadratic Function
- Equations, Review Exercises, and Practice Test 236

8	Trigonometric Functions of	
	Any Angle	240
8.1	Signs of the Trigonometric Functions	241
8.2	Trigonometric Functions of Any Angle	243
8.3	Radians	249
8.4	Applications of Radian Measure	253
Equa	tions, Review Exercises, and Practice Test	260
9	Vectors and Oblique Triangles	264
9.1	Introduction to Vectors	265
9.2	Components of Vectors	269
9.3	Vector Addition by Components	273
9.4	Applications of Vectors	277
9.5	Oblique Triangles, the Law of Sines	282
9.6	The Law of Cosines	288
Equa	tions, Review Exercises, and Practice Test	292
10	Graphs of The Trigonometric	
	Functions	296
10.1	Graphs of $y = a \sin x$ and $y = a \cos x$	297
10.2	Graphs of $y = a \sin bx$ and $y = a \cos bx$	300
10.3	Graphs of $y = a \sin(bx + c)$ and $y = a \cos(bx + c)$) 303
10.4	Graphs of $y = \tan x$, $y = \cot x$, $y = \sec x$, $y = \csc x$	c 307
10.5	Applications of the Trigonometric Graphs	310
10.6	Composite Trigonometric Curves	313
Equa	tions, Review Exercises, and Practice Test	317
11	Exponents and Radicals	320
11.1	Simplifying Expressions with	
	Integral Exponents	321
11.2	Fractional Exponents	325
11.3	Simplest Radical Form	329
11.4	Addition and Subtraction of Radicals	333
-	Multiplication and Division of Radicals	335
Equa	itions, Review Exercises, and Practice Test	339
12	Complex Numbers	341
12.1	Basic Definitions	342
12.2	Basic Operations with Complex Numbers	345
12.3	Graphical Representation of	
	Complex Numbers	348
12.4	Polar Form of a Complex Number	350
12.5	Exponential Form of a Complex Number	352
12.6	of Complex Numbers	355

12.7	An Application to Alternating-Current (ac) Circuits	361
Equa	tions, Review Exercises, and Practice Test	366
13	Exponential and Logarithmic	
	Functions	370
13.1	Exponential Functions	371
13.2	Logarithmic Functions	373
13.3	Properties of Logarithms	377
13.4	Logarithms to the Base 10	382
13.5	Natural Logarithms	385
13.6	Exponential and Logarithmic Equations	388
13.7	Graphs on Logarithmic and	
	Semilogarithmic Paper	392
Equa	tions, Review Exercises, and Practice Test	396

14	Additional Types of Equations	
	and Systems of Equations	399
14 1	Graphical Solution of Systems of Equations	400

14.1	Graphical solution of systems of Equations	400
14.2	Algebraic Solution of Systems of Equations	403
14.3	Equations in Quadratic Form	407
14.4	Equations with Radicals	410

Review Exercises and Practice Test

actice Test 414

15	Equations of Higher Degree	417
15.1	The Remainder and Factor Theorems;	
	Synthetic Division	418
15.2	The Roots of an Equation	423
15.3	Rational and Irrational Roots	427
Equations, Review Exercises, and Practice Test		433

16	Matrices; Systems of Linear	435
	Equations	
16.1	Matrices: Definitions and Basic Operations	436
16.2	Multiplication of Matrices	439
16.3	Finding the Inverse of a Matrix	445
16.4	Matrices and Linear Equations	449
16.5	Gaussian Elimination	454
16.6	Higher-Order Determinants	457
Equations, Review Exercises, and Practice Test		

17	Inequalities	467
17.1	Properties of Inequalities	468
17.2	Solving Linear Inequalities	472
17.3	Solving Nonlinear Inequalities	476

Equations, Review Exercises, and Practice Test		
17.6	Linear Programming	488
	Two Variables	485
17.5	Graphical Solution of Inequalities with	
17.4	Inequalities Involving Absolute Values	482

18 Variation

18.1	Ratio and Proportion	496
18.2	Variation	500

495

562

615

616

Equations, Review Exercises, and Practice Test 506

19	Sequences and The Binomial	
	Theorem	510
19.1	Arithmetic Sequences	511
19.2	Geometric Sequences	516
19.3	Infinite Geometric Series	520
19.4	The Binomial Theorem	523
Equa	tions, Review Exercises, and Practice Test	528

20 Additional Topics in Trigonometry 531

20.1	Fundamental Trigonometric Identities	532
20.2	The Sum and Difference Formulas	537
20.3	Double-Angle Formulas	542
20.4	Half-Angle Formulas	545
20.5	Solving Trigonometric Equations	548
20.6	The Inverse Trigonometric Functions	553
Equations, Review Exercises, and Practice Test		558

21 Plane Analytic Geometry

21.1	Basic Definitions	563
21.2	The Straight Line	567
21.3	The Circle	573
21.4	The Parabola	578
21.5	The Ellipse	582
21.6	The Hyperbola	587
21.7	Translation of Axes	593
21.8	The Second-Degree Equation	596
21.9	Rotation of Axes	599
21.10 Polar Coordinates		603
21.11	Curves in Polar Coordinates	606
Equations, Review Exercises, and Practice Test		

22 Introduction to Statistics

22.1 Tabular and Graphical Representation of Data

22.2	Summarizing Data	620
22.3	Normal Distributions	628
22.4	Confidence Intervals	634
22.5	Statistical Process Control	640
22.6	Linear Regression	646
22.7	Nonlinear Regression	651

Equations, Review Exercises, and Practice Test 654

23 The Derivative 659

23.1	Limits	660
23.2	The Slope of a Tangent to a Curve	669
23.3	The Derivative	673
23.4	The Derivative as an Instantaneous	
	Rate of Change	677
23.5	Derivatives of Polynomials	682
23.6	Derivatives of Products and Quotients of	
	Functions	686
23.7	The Derivative of a Power of a Function	690
23.8	Differentiation of Implicit Functions	699
23.9	Higher Derivatives	702

Equations, Review Exercises, and Practice Test 706

24	Applications of the Derivative	711
24.1	Tangents and Normals	712
24.2	Newton's Method for Solving Equations	714
24.3	Curvilinear Motion	718
24.4	Related Rates	722
24.5	Using Derivatives in Curve Sketching	727
24.6	More on Curve Sketching	732
24.7	Applied Maximum and Minimum Problems	737
24.8	Differentials and Linear Approximations	743
Equations, Review Exercises, and Practice Test		747

25 Integration 752 25.1 Antiderivatives 753 25.2 The Indefinite Integral 755 25.3 The Area Under a Curve 760 25.4 The Definite Integral 765 25.5 Numerical Integration: The Trapezoidal Rule 768 25.6 Simpson's Rule 771 Equations, Review Exercises, and Practice Test 774 **26** Applications of Integration 777

26.1 Applications of the Indefinite Integral77826.2 Areas by Integration782

X CONTENTS

Equations, Review Exercises, and Practice Test		809
26.6	Other Applications	804
26.5	Moments of Inertia	799
26.4	Centroids	793
26.3	Volumes by Integration	788

27	Differentiation of Transcendental Functions	814
27.1	Derivatives of the Sine and Cosine	
	Functions	815
27.2	Derivatives of the Other Trigonometric	
	Functions	819
27.3	Derivatives of the Inverse Trigonometric	
	Functions	822
27.4	Applications	825
27.5	Derivative of the Logarithmic Function	830
27.6	Derivative of the Exponential Function	834
27.7	L'Hospital's Rule	837
27.8	Applications	841
Equations, Review Exercises, and Practice Test		

28	Methods of Integration	849
28.1	The General Power Formula	850
28.2	The Basic Logarithmic Form	852
28.3	The Exponential Form	856
28.4	Basic Trigonometric Forms	859
28.5	Other Trigonometric Forms	863
28.6	Inverse Trigonometric Forms	867
28.7	Integration by Parts	871
28.8	Integration by Trigonometric	
	Substitution	876
28.9	Integration by Partial Fractions:	
	Nonrepeated Linear Factors	879
28.10	Integration by Partial Fractions:	
	Other Cases	883
28.11	Integration by Use of Tables	888
Equa	tions, Review Exercises, and Practice Test	891
29	Partial Derivatives and Double	205

	Integrals	895	
29.1	Functions of Two Variables	896	
29.2	Curves and Surfaces in Three Dimensions	899	

Equa	tions. Review Exercises, and Practice Test	913
29.4	Double Integrals	909
29.3	Partial Derivatives	905

30	Expansion of Functions in Series	915
30.1	Infinite Series	916
30.2	Maclaurin Series	919
30.3	Operations with Series	923
30.4	Computations by Use of Series Expansions	928
30.5	Taylor Series	931
30.6	Introduction to Fourier Series	934
30.7	More About Fourier Series	940

Equations, Review Exercises, and Practice Test 945

	31	Differential Equations	949
	31.1	Solutions of Differential Equations	950
	31.2	Separation of Variables	952
	31.3	Integrating Combinations	955
	31.4	The Linear Differential Equation	
		of the First Order	957
	31.5	Numerical Solutions of First-Order	
		Equations	960
	31.6	Elementary Applications	963
	31.7	Higher-Order Homogeneous Equations	969
	31.8	Auxiliary Equation with Repeated	
		or Complex Roots	973
	31.9	Solutions of Nonhomogeneous Equations	977
31.10 Applications of Higher-Order Equations			982
31.11 Laplace Transforms 9			989
31.12 Solving Differential Equations by Laplace			
		Transforms	994
Equations, Review Exercises, and Practice Test 9			998
	Арре	endix A Solving Word Problems	A.1
Appendix B A Table of Integrals A			A.2
Answer to Odd-Numbered Exercises			B.1
Solutions to Practice Test Problems			C.1
Index of Applications			D.1
Index of Writing Exercises			D.10
Index			D.12

Preface

Scope of the Book

Basic Technical Mathematics with Calculus, SI Version, tenth edition, is intended primarily for students in technical and pre-engineering technology programs or other programs for which coverage of basic mathematics is required. Chapters 1 through 20 provide the necessary background for further study, with an integrated treatment of algebra and trigonometry. Chapter 21 covers the basic topics of analytic geometry, and Chapter 22 gives an introduction to statistics. Fundamental topics of calculus are covered in Chapters 23 through 31. In the examples and exercises, numerous applications from many fields of technology are included, primarily to indicate where and how mathematical techniques are used. However, it is not necessary that the student have a specific knowledge of the technical area from which any given problem is taken.

Most students using this text will have a background that includes some algebra and geometry. However, the material is presented in adequate detail for those who may need more study in these areas. The material presented here is sufficient for three to four semesters.

One of the principal reasons for the arrangement of topics in this text is to present material in an order that allows a student to take courses concurrently in allied technical areas, such as physics and electricity. These allied courses normally require a student to know certain mathematical topics by certain definite times; yet the traditional order of topics in mathematics courses makes it difficult to attain this coverage without loss of continuity. However, the material in this book can be rearranged to fit any appropriate sequence of topics. Another feature of this text is that certain topics traditionally included for mathematical completeness have been covered only briefly or have been omitted. The approach used in this text is not unduly rigorous mathematically, although all appropriate terms and concepts are introduced as needed and given an intuitive or algebraic foundation. The aim is to help the student develop an understanding of mathematical methods without simply providing a collection of formulas. The text material has been developed with the recognition that it is essential for the student to have a sound background in algebra and trigonometry in order to understand and succeed in any subsequent work in mathematics.

New Features

In this tenth edition of *Basic Technical Mathematics with Calculus, SI Version*, we have retained all the basic features of successful previous editions and have also introduced a number of improvements, described here.

NEW AND REVISED COVERAGE

The topics of units and measurement covered in an appendix in the ninth edition have been expanded and integrated into Chapter 1, together with new discussions on rounding and on engineering notation. Interval notation is introduced in Chapter 3 and is used in several sections throughout the text. Chapter 31 includes a new subsection on solving nonhomogeneous differential equations using Fourier series.

Chapter 22 has been revised and expanded; a new section on summarizing data covers measures of central tendency, measures of spread, and new material on Chebychev's theorem; the section on normal distributions now includes a subsection on sampling distributions. In addition, the chapter now includes a completely new section on confidence intervals.

EXPANDED PEDAGOGY

• NEW "Common Error" boxes appear throughout the text. A fresh design emphasizes valuable warnings against common mistakes or areas where students frequently have difficulty. These boxes replace the notes flagged by a "Caution" indicator in the previous edition.

- NEW "Learning Tip" boxes appear in the margin throughout the text. These colourful boxes highlight the underlying rationale of using specific mathematical functions and encourage students to think strategically about how and why specific mathematical concepts are needed and applied. They also focus attention on material that is of particular importance in understanding the topic under discussion. These boxes replace the notes flagged by a "Notes" indicator in the previous edition.
- NEW "Procedure" boxes include step-by-step instructions on how to perform select calculations.

FEWER CALCULATOR SCREENS

Many figures involving screens from a graphic calculator have been either removed from the text or replaced by regular graphs. The calculator displays that remain are, for the most part, related to topics that require the use of technology (such as the graphical solution of systems of equations) or topics where technology can greatly simplify a process (such as obtaining the inverse of a large matrix). The appendix on graphing calculators from the previous edition dedicated to the graphing calculator will be available in Chapter 34 of the Study Plan in both MyMathLab and MathXL versions of this course. Students will also have easy access to it through the eText in MyMathLab.

FUNCTIONAL USE OF COLOUR

The new full-colour design of this edition uses colour effectively for didactical purposes. Many figures and graphs have been enhanced with colour. Moreover, colour is used to identify and focus attention on the text's new pedagogical features. Colour is also used to highlight the question numbers of writing exercises so that students and instructors can identify them easily.

NOTATION

Symbols used in accordance with professional Canadian standards are applied consistently throughout the text.

INCREASED BREADTH OF APPLICATIONS

New examples and exercises have been added in order to increase the range of applications covered by the text. New material can be found involving statics, fluid mechanics, optics, acoustics, cryptography, forestry, reliability, and quality control, to name but a few.

INTERNATIONAL CANADIAN CONTENT

New Canadian content appears either in the form of examples within the text (some of which are linked to chapter openers, so they are accompanied by a full colour image), or as exercises at the end of a section or chapter. All material of global interest has been retained or updated, and some new exercises were also added.

LEARNING OUTCOMES

A list of Learning Outcomes appears on the introductory page of each chapter, replacing the list of key topics for each section in the previous edition. This new learning tool reflects the current emphasis on learning outcomes and gives the student and instructor a quick way of checking that they have covered key contents of the chapter.

Continuing Features

EXAMPLE DESCRIPTIONS

A brief descriptive title is given with each example number. This gives an easy reference for the example, which is particularly helpful when a student is reviewing the contents of the section.

PRACTICE EXERCISES

Throughout the text, there are *practice exercises* in the margin. Most sections have at least one (and up to as many as four) of these basic exercises. They are included so that a student is more actively involved in the learning process and can check his or her understanding of the material to that point in the section. They can also be used for classroom exercises. The answers to these exercises are given at the end of the exercise set for the section.

NEW EXERCISES

More than 300 exercises are new or have been updated. This tenth edition contains a total of about 12 500 exercises.

CHAPTER INTRODUCTIONS

Each chapter introduction illustrates specific examples of how the development of technology has been related to the development of mathematics. These introductions show that past discoveries in technology led to some of the methods in mathematics, whereas in other cases mathematical topics already known were later very useful in bringing about advances in technology.

SPECIAL EXPLANATORY COMMENTS

Throughout the book, special explanatory comments in colour have been used in the examples to emphasize and clarify certain important points. Arrows are often used to indicate clearly the part of the example to which reference is made.

IMPORTANT FORMULAS

Throughout the book, important formulas are set off and displayed so that they can be easily referenced.

SUBHEADS AND KEY TERMS

Many sections include subheads to indicate where the discussion of a new topic starts within the section. Key terms are noted in the margin for emphasis and easy reference.

EXERCISES DIRECTLY REFERENCED TO TEXT EXAMPLES

The first few exercises in most of the text sections are referenced directly to a specific example of the section. These exercises are worded so that it is necessary for the student to refer to the example in order to complete the required solution. In this way, the student should be able to review and understand the text material better before attempting to solve the exercises that follow.

WRITING EXERCISES

One specific writing exercise is included at the end of each chapter. These exercises give the students practice in explaining their solutions. Also, there are more than 400 additional exercises throughout the book (at least 8 in each chapter) that require at least a sentence or two of explanation as part of the answer. The question numbers of writing exercises are highlighted in colour. A special "Index of Writing Exercises" is included at the back of the book.

WORD PROBLEMS

There are more than 120 examples throughout the text that show the complete solutions of word problems. There are also more than 850 exercises in which word problems are to be solved.

CHAPTER EQUATIONS, REVIEW EXERCISES, AND PRACTICE TESTS

At the end of each chapter, all important equations are listed together for easy reference. Each chapter is also followed by a set of review exercises that covers all the material in the chapter. Following the chapter equations and review exercises is a chapter practice test that students can use to check their understanding of the material. Solutions to all practice test problems are given in the back of the book.

APPLICATIONS

Examples and exercises illustrate the application of mathematics in all fields of technology. Many relate to modern technology such as computer design, electronics, solar energy, lasers, fibre optics, the environment, and space technology. A special "Index of Applications" is included near the end of the book.

EXAMPLES

There are more than 1400 worked examples in this text. Of these, more than 300 illustrate technical applications.

FIGURES

There are more than 1300 figures in the text. Approximately 20% of the figures are new or have been modified for this edition.

MARGIN NOTES

Throughout the text, some margin notes briefly point out relevant historical events in mathematics and technology. Other margin notes are used to make specific comments related to the text material. Also, where appropriate, equations from earlier material are shown for reference in the margin.

ANSWERS TO EXERCISES

The answers to all odd-numbered exercises (except the end-of-chapter writing exercises) are given at the back of the book. The *Student's Solution Manual* contains revised solutions for every other odd-numbered exercise and can be accessed via MyMathLab as well as PCL. The *Instructor's Solution Manual* contains solutions for all section exercises.

FLEXIBILITY OF MATERIAL COVERAGE

The order of material coverage can be changed in many places, and certain sections may be omitted without loss of continuity of coverage. Users of earlier editions have indicated the successful use of numerous variations in coverage. Any changes will depend on the type of course and completeness required.

Supplements

SUPPLEMENTS FOR THE INSTRUCTOR

Instructor's resources include the following supplements.

Instructor's Solutions Manual

The *Instructor's Solution Manual* contains detailed solutions to every section exercise, including review exercises.

Animated PowerPoint Presentations

More than 150 animated slides are available for download from a protected location on Pearson Education's online catalogue, at www.pearsoned.ca.

Each slide offers a step-by-step mini lesson on an individual section, or key concept, formula, or equation from the first 28 chapters of the book. For instance, 15 steps for using the "General Power Formula for Integration" are beautifully illustrated in the animated slide for Chapter 28. There are two sets of slides for "Operations with Complex Numbers" for section 2 of Chapter 12; the 9 steps to perform addition are shown on one slide, and the 13 steps to perform subtraction appear on the second slide.

These animated slides offer bite-sized chunks of key information for students to review and process prior to going to the homework questions for practice. Please note that not every section in every chapter is accompanied by an animated slide as some topics lend themselves to this approach more than others.

TestGen with Algorithmically Generated Questions

Instructors can easily create tests from textbook section objectives. Algorithmically generated questions allow unlimited versions. Instructors can edit problems or create their own by using the built-in question editor to generate graphs; import graphics; and insert math notation, variable numbers, or text. Tests can be printed or administered online via the Web or other network.

MyMathLab[®] Online Course

MyMathLab delivers proven results in helping individual students succeed:

- MyMathLab has a consistently positive impact on the quality of learning in higher education math instruction. MyMathLab can be successfully implemented in any environment—lab-based, hybrid, fully online, traditional—and demonstrates the quantifiable difference that integrated usage has on student retention, subsequent success, and overall achievement.
- MyMathLab's comprehensive online gradebook automatically tracks students' results on tests, quizzes, and homework and in the study plan. You can use the gradebook to quickly intervene if your students have trouble or to provide positive feedback on a job well done. The data within MyMathLab is easily exported to a variety of spreadsheet programs, such as Microsoft Excel. You can determine which points of data you want to export and then analyze the results to determine success.

MyMathLab provides **engaging experiences** that personalize, stimulate, and measure learning for each student:

- **Exercises:** The homework and practice exercises in MyMathLab are correlated to the exercises in the textbook, and they regenerate algorithmically to give students unlimited opportunity for practice and mastery. The software offers immediate, helpful feedback when students enter incorrect answers.
- **Multimedia learning aids:** Exercises include guided solutions, sample problems, animations, videos, and eText clips for extra help at point-of-use.
- **Expert tutoring:** Although many students describe the whole of MyMathLab as "like having your own personal tutor," students using MyMathLab do have access to live tutoring from Pearson, from qualified mathematics and statistics instructors who provide tutoring sessions for students via MyMathLab.

And MyMathLab comes from a **trusted partner** with educational expertise and an eye on the future:

• Knowing that you are using a Pearson product means knowing that you are using quality content. Our eTexts are accurate, and our assessment tools work. Whether you are just getting started with MyMathLab or have a question along the way, we're here to help you learn about our technologies and how to incorporate them into your course.

To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit **www.mymathlab.com** or contact your Pearson representative.

MathXL[®] Online Course

MathXL[®] is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.) With MathXL, instructors can:

- Create, edit, and assign online homework and tests using algorithmically generated exercises correlated at the objective level to the textbook.
- Create and assign their own online exercises and import TestGen tests for added flexibility.
- Maintain records of all student work tracked in MathXL's online gradebook. With MathXL, students can:
- Take chapter tests in MathXL and receive personalized study plans and/or personalized homework assignments based on their test results.

- Use the study plan and/or the homework to link directly to tutorial exercises for the objectives they need to study.
- Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website, at www.mathxl.com, or contact your Pearson representative.

PCL

For enrollments of at least 25 students, you can create your own textbook by choosing the chapters that best suit your own course needs. To begin building your custom text, visit www.pearsoncustomlibrary.com. You may also work with a dedicated Pearson Custom editor to create your ideal text—publishing your own original content or mixing and matching Pearson content. Contact your local Pearson representative to get started.

CourseSmart for Instructors

CourseSmart goes beyond traditional expectations—providing instant, online access to textbooks and course materials. You can save time and hassle with a digital eTextbook that allows you to search for the most relevant content at the very moment you need it. Whether it's evaluating textbooks or creating lecture notes to help students with difficult concepts, CourseSmart can make life a little easier. See how by visiting www. coursesmart.com/instructors.

Acknowledgments

The team at Pearson Canada—Gary Bennett, Laura Armstrong, Cathleen Sullivan, Mary Wat, Michelle Bish—made this new edition possible.

Also of great assistance during the production of this edition were Kimberley Blakey; Heidi Allgair; Kitty Wilson, copyeditor; Denne Wesolowski, proofreader; and Robert Brooker, tech checker.

The authors gratefully acknowledge the contributions of the following reviewers, whose detailed comments and many suggestions were of great assistance in preparing this tenth edition:

Robert Connolly	Michael Delgaty	
Algonquin College	Tshwane University of Technology	
David Zeng	Monos Naidoo	
DeVry Institute of Technology	Tshwane University of Technology	
Paul Wraight	Cornelia Bica	
Alexei Gokhman	NAIT	
Jack Buck	Valerie Webber Mohawk College	
SAIT Polytechnic	David Haley	
Frank Walton	Algonquin College	
<i>Lethbridge College</i>	Najam Khaja	
Robert Hamel	Centennial College	
Sault College of Applied	Bruce Miller	
Arts and Technology	Georgian College	
Tony Biles	Takashi Nakamura	
College of the North Atlantic	British Columbia Institute	
Colin Fraser	<i>of Technology</i>	
<i>Niagara College</i>	Richard Gruchalla	
Marlene Hutscal The Northern Alberta Institute of Technology	George Brown College	

Finally, thanks go to Kerry Kijewski for contributing to the development plan for this project and for his work on several chapters.